首页> 外文OA文献 >Anomaly intrusion detection system using immune network with reduced network traffic features
【2h】

Anomaly intrusion detection system using immune network with reduced network traffic features

机译:利用免疫网络减少网络流量的异常入侵检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intrusion Detection Systems (IDS) are developed to be the defense against these security threats. Current signature based IDS like firewalls and anti viruses, which rely on labeled training data, generally can not detect novel attacks. A method that offers a promise to solve this problem is the anomaly based IDS. Literature has shown that direction towards reducing false positive rate and thus enhancing the detection rate and speed have shifted from accurate machine learning classifiers to the adaptive models like bio-inspired models. Consequently, this study has been introduced to enhance the detection rate and speed up the detection process by reducing the network traffic features. Moreover, it aimed to investigate the implementation of the bio-inspired Immune Network approach for clustering different kinds of attacks. This approach aimed at enhancing the detection rate of novel attacks and thus decreasing the high false positive rate in IDS. Rough Set method was applied to reduce the dimension of KDD CUP ’99 dataset which used by this study and select only the features that best represent all kinds of attacks. Immune Network clustering was then applied using aiNet algorithm in order to cluster normal data from attacks in the testing dataset. The results revealed that detection rate and speed were enhanced by using only the most significant features. Furthermore, it was found that Immune Network clustering method is robust in detecting novel attacks in the test dataset. The principal conclusion was that IDS is enhanced by the use of significant network traffic features besides the implementation of the Immune Network clustering to detect novel attacks.
机译:入侵检测系统(IDS)旨在抵御这些安全威胁。当前基于签名的IDS(如防火墙和防病毒)依赖于标记的培训数据,通常无法检测到新颖的攻击。可以解决该问题的一种方法是基于异常的IDS。文献表明,降低误报率从而提高检测率和速度的方向已经从精确的机器学习分类器转移到了像生物启发模型这样的自适应模型上。因此,已引入此研究以通过减少网络流量功能来提高检测率并加快检测过程。此外,它的目的是研究以生物启发免疫网络方法对各种攻击进行聚类的方法。这种方法旨在提高新型攻击的检测率,从而降低IDS中的高误报率。应用了粗糙集方法来减少本研究使用的KDD CUP ’99数据集的维数,并仅选择最能代表各种攻击的特征。然后使用aiNet算法应用免疫网络聚类,以聚类来自测试数据集中攻击的正常数据。结果表明,仅使用最重要的功能可以提高检测率和速度。此外,发现免疫网络聚类方法在检测测试数据集中的新颖攻击方面很强大。主要结论是,除了实施免疫网络群集以检测新型攻击之外,还通过使用重要的网络流量功能增强了IDS。

著录项

  • 作者

    Qasem Murad Abdo Rassam;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号