首页> 外文OA文献 >Zinc oxide surge arrester condition monitoring using thermal image and third harmonic leakage current correlation
【2h】

Zinc oxide surge arrester condition monitoring using thermal image and third harmonic leakage current correlation

机译:利用热图像和三次谐波泄漏电流相关性监控氧化锌避雷器状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Arrester is used to protect high voltage equipment or electric power lines from permanent or temporary overvoltage. It is imperative to perform a frequent monitoring on the condition of the arrester as this device will prevent damage to the power system. When there is an AC operating voltage applied across the arrester body, there is a small leakage current flowing to the ground terminal of the arrester. Currently, the third harmonic component of the leakage current has been used to identify the condition of the arrester whether it is still safe to be used. However, measurements of the leakage current and its harmonic components pose some difficulties. Moreover, the usage of a new technique based on thermal condition in monitoring the performance of arrester has been studied widely. The thermal condition of an arrester can be used to support the efficiency of the monitoring process. This research proposes to investigate the correlation between two variables, namely the third harmonic leakage current, and the arrester housing surface temperature (representing the thermal condition of the arrester) using a Radial Basis Function (RBF) Neural Network analysis. In addition, this research also studies the effect of ambient temperature on the correlation between the two variables. The leakage current values were measured using a current shunt and a digital storage oscilloscope, and then analyzed using Fast Fourier Transform to obtain its harmonic component. The surface thermal profile of the arrester body was captured using a thermal camera and then further analyzed to obtain several key representative parameters including the maximum, minimum, average, and standard deviation temperatures. These temperature parameters, together with the ambient temperature, were used as input variables while the third harmonic leakage current magnitude as a target to the proposed radial basis function neural network. The ambient temperature was then omitted in a repeated computation. From the radial basis function analyses, the two mentioned variables are positively correlated. Also, the ambient temperature has an effect on this correlation, whereby it is advisable also include the ambient temperature in the ANN computation to minimize the error. The results from all experimental data (500 training, 61 testing) show that a 97% accuracy in categorizing the arrester condition (either good or bad) is successfully achieved. Thus, it can be concluded that there is a good correlation between the third harmonic leakage current and the thermal image of an arrester which means the thermal image can be used as an alternative technique for zinc oxide surge arrester monitoring without the need to measure the leakage current.
机译:避雷器用于保护高压设备或电力线免受永久性或暂时性过电压的影响。必须定期对避雷器的状况进行监视,因为此设备将防止损坏电源系统。当在避雷器主体上施加交流工作电压时,会有少量泄漏电流流向避雷器的接地端子。当前,泄漏电流的三次谐波分量已被用于识别避雷器的状况是否仍然可以安全使用。然而,泄漏电流及其谐波分量的测量带来一些困难。而且,已经广泛研究了基于热条件的新技术在监测避雷器性能方面的应用。避雷器的热状况可用于支持监控过程的效率。这项研究建议使用径向基函数(RBF)神经网络分析法调查两个变量之间的相关性,即三次谐波泄漏电流和避雷器外壳表面温度(代表避雷器的温度条件)。此外,本研究还研究了环境温度对两个变量之间相关性的影响。使用电流分流器和数字存储示波器测量泄漏电流值,然后使用快速傅立叶变换进行分析以获得其谐波分量。使用热像仪捕获避雷器主体的表面热分布,然后进一步分析以获得几个关键的代表性参数,包括最大,最小,平均和标准偏差温度。这些温度参数与环境温度一起用作输入变量,而三次谐波泄漏电流的大小则作为所提出的径向基函数神经网络的目标。然后在重复计算中省略环境温度。从径向基函数分析来看,提到的两个变量是正相关的。同样,环境温度也会影响此相关性,因此建议在ANN计算中也包括环境温度,以使误差最小。所有实验数据(500次训练,61次测试)的结果表明,成功地将避雷器状况(好或坏)分类的准确性达到了97%。因此,可以得出结论,三次谐波泄漏电流与避雷器的热图像之间具有良好的相关性,这意味着该热图像可以用作监测氧化锌避雷器的替代技术,而无需测量泄漏当前。

著录项

  • 作者

    Abd. Ghafar Nur Asilah;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号