首页> 外文OA文献 >CFD modeling of flow induced vibration mechanism in sea water piping on a regasification terminal platform
【2h】

CFD modeling of flow induced vibration mechanism in sea water piping on a regasification terminal platform

机译:再气化终端平台上海水管道中流致振动机理的CFD建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vibration is a common problem in water piping system, particularly when it involves multiple elbows. One of the sources of vibration is the turbulent flow in the system. The objective of this project paper is to investigate the mechanisms that leads to excessive vibration in the sea water discharge piping experienced on floating LNG platform. The model is developed to simulate the actual conditions experienced at the platform. The simulations were done using selected turbulent models, because the Reynolds’s Number at any condition within the operating envelope is more than 4000. Upon completion of the simulations, focus on excitation at the wall is critical to be done. The major mechanism of vibration is pressure difference within the fluid flow. Thus, pressure and wall shear stress acting along the pipe wall need to be analyzed to pin point whether there is any mechanism at work which will induce vibration. The results show large pressure difference was observed between the inner and outer elbows thus prompting high inclination to vibration. It was observed that higher fluctuations of velocity and pressure near the wall as the Reynolds’s number increases. The amplitudes of the fluctuations for both pressure and velocity were seen to be close to linear in nature.
机译:振动是水管道系统中的常见问题,尤其是当它涉及多个弯头时。振动的来源之一是系统中的湍流。该项目文件的目的是研究导致浮动LNG平台上的海水排放管道过度振动的机理。开发该模型以模拟平台上遇到的实际条件。仿真是使用选定的湍流模型完成的,因为在工作范围内的任何条件下,雷诺数均大于4000。仿真完成后,着重进行壁面激励至关重要。振动的主要机理是流体流内的压力差。因此,需要分析沿管壁作用的压力和壁切应力,以查明是否有任何会引起振动的机制在起作用。结果表明,在内,外肘之间观察到较大的压差,从而促使较高的振动倾向。据观察,随着雷诺数的增加,壁附近的速度和压力会有较大波动。压力和速度的波动幅度在本质上都接近线性。

著录项

  • 作者

    Mortaza Ahmad;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号