首页> 外文OA文献 >New framework for securing mobile adhoc network using lightweight authentication and signature-based intrusion detection system
【2h】

New framework for securing mobile adhoc network using lightweight authentication and signature-based intrusion detection system

机译:使用轻量级身份验证和基于签名的入侵检测系统保护移动自组织网络的新框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile Adhoc Network (MANET) is vulnerable to network attacks due toudits open communication medium. Blackhole and wormhole attacks are the mostudsevere attacks in the network. The attacks cause congestion and increase theudpossibility of con�dential data theft. Unfortunately, the existing security solutionsudare insu�cient to protect the network. This work proposed a new securityudframework, named Extra Secure Adhoc on Demand Distance Vector (ESAODV).udThis framework provides a defense-in-depth protection through layered securityudmeasures: secure protocol and intrusion detection system (IDS) with extraudcountermeasures. The �rst layer implements lightweight packet authentication,udand the second layer monitors and counters malicious packets. In this study,udESAODV was implemented using Java in Time Simulator/Scalable WirelessudAdhoc Network Simulator, and analyzed using R-Statistics, Sigma Plot andudMinitab. Results showed that ESAODV had contained the blackhole attackudand the hybrid blackhole attack (HBHA) e�ectively. The number of corruptingudrouting tables of benign nodes could be minimized to be near zero even if theudnumber of attackers were increased. In addition, the IDS accurately detectedudthe wormhole and the variant of wormhole attack called diversion of packet overudthe wormhole link (DP-WHL). The false positive for live attack detection wasudsmall. The accuracy of detection was more than 94.5 percent. Although attackersudchanged the pattern of packets diversion, the IDS detected the new attack patternudin near real time. In addition to these �ndings, this research has also modeledudfour performance metrics data of ESAODV, i.e., memory usage, elapsed timeudfor completing routing tasks, number of route replies and route success, basedudon both linear regression and neural network. Goodness of �t parameters forudthe models based on the neural network was higher than the linear regression.udESAODV has been proven to provide a comprehensive protection from the mostudsevere attacks in the network. Furthermore, the performance metrics of ESAODVudbased on the neural network produced a superior model.
机译:移动自组织网络(MANET)由于 udit开放通信介质而容易受到网络攻击。黑洞和虫洞攻击是网络中最严厉的攻击。这些攻击会导致拥塞并增加机密数据被盗的可能性。不幸的是,现有的安全解决方案无法保护网络。这项工作提出了一种新的安全性 udframe,称为“超安全按需点播距离矢量(ESAODV)”。应对措施。第一层实现轻量级数据包身份验证,第二层监视和计数恶意数据包。在这项研究中, udESAODV是在Time Simulator / Scalable Wireless udAdhoc Network Simulator中使用Java实现的,并使用R-Statistics,Sigma Plot和 udMinitab进行了分析。结果显示ESAODV有效地包含了黑洞攻击 ud和混合黑洞攻击(HBHA)。即使攻击者的数量增加,也可以将良性节点的损坏/破坏表的数量最小化为接近零。此外,IDS可以准确地检测到蠕虫洞,并通过蠕虫洞攻击的变种将数据包转移到蠕虫洞链路(DP-WHL)中。实时攻击检测的误报很小。检测的准确性超过94.5%。尽管攻击者更改了数据包转移模式,但IDS几乎实时地检测到新的攻击模式。除这些发现外,本研究还基于线性回归和神经网络,对ESAODV的四个性能指标数据进行了建模,即内存使用量,完成路由任务所花费的时间,ud,路由回复和成功的数量。 。基于神经网络的模型的t参数的优越性高于线性回归。udESAODV已被证明可以为网络中最严厉的攻击提供全面的保护。此外,基于神经网络的ESAODV ud的性能指标产生了更好的模型。

著录项

  • 作者

    Mandala Satria;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号