首页> 外文OA文献 >Per-pixel and sub-pixel classifications of high-resolution satellite data for mangrove species mapping
【2h】

Per-pixel and sub-pixel classifications of high-resolution satellite data for mangrove species mapping

机译:用于红树林物种制图的高分辨率卫星数据的按像素和亚像素分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High spatial resolution sensors such as IKONOS and QuickBird, are expected to classify mangrove species more accurately than coarse spatial resolution satellite images. Conventional per-pixel classification techniques could not improve the classification accuracy when such high-resolution images are applied. Such failure has encouraged the invention of more sophisticated and deterministic techniques i.e. subpixel classifications. In this study, the mangrove forest at Sungai Belungkor, Johor, Malaysia was classified using IKONOS data. Two classification approaches were applied, namely per-pixel and sub-pixel techniques. The conventional per-pixel classifiers used in this study were Maximum Likelihood (ML), Minimum Distance to Mean (MDM) and Contextual Logical Channel (CLC) while the Linear Mixture Model (LMM) was selected as the sub-pixel classification approach. The classification results revealed that the CLC classification with a contrast texture measure at window size 21 x 21 yielded the highest accuracy (82%) in comparison to the ML (68%) or MDM (64%). The spatial distribution of the classified mangrove species and classes coincided with the common mangrove zones in Malaysia. For the results of the LMM, the fraction of pixels measured from the satellite imagery and observed in the field gave a good correlation with an R2 value of 0.83 for Bakau minyak, a moderate correlation with an R2 of approximately 0.71 for Bakau kurap and an R2 of 0.75 for the ‘Others’ type of mangrove species. An error image was also created to compare the best fitting spectrum produced by the inversion of the LMM with the original observed spectrum, where the maximum RMS error was only 5%.
机译:诸如IKONOS和QuickBird之类的高空间分辨率传感器有望比粗略的空间分辨率卫星图像更准确地对红树林物种进行分类。当应用此类高分辨率图像时,常规的按像素分类技术无法提高分类精度。这种失败促使发明了更复杂和确定性的技术,即亚像素分类。在这项研究中,使用IKONOS数据对马来西亚柔佛州双溪Belungkor的红树林进行了分类。应用了两种分类方法,即每像素和子像素技术。本研究中使用的常规每像素分类器是最大似然(ML),最小均值距离(MDM)和上下文逻辑通道(CLC),而选择线性混合模型(LMM)作为子像素分类方法。分类结果显示,与ML(68%)或MDM(64%)相比,在窗口大小为21 x 21的情况下采用对比纹理度量的CLC分类产生了最高的准确性(82%)。分类的红树林物种和类别的空间分布与马来西亚常见的红树林区相吻合。对于LMM的结果,从卫星图像测量并在野外观察到的像素比例与Bakau minyak的R2值为0.83具有良好的相关性,与Bakau kurap的R2约为0.71和R2的相关性中等对于“其他”类型的红树林物种,该比例为0.75。还创建了一个误差图像,以将LMM反演产生的最佳拟合频谱与原始观测频谱进行比较,原始频谱的最大RMS误差仅为5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号