首页> 外文OA文献 >Localizing non-ideal irises via Chan-Vese model and variation level set of active contours without re-initializing
【2h】

Localizing non-ideal irises via Chan-Vese model and variation level set of active contours without re-initializing

机译:通过Chan-Vese模型和活动轮廓的变化水平集对非理想虹膜进行定位,而无需重新初始化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biometrics is the science of recognizing the identity of a person based on the physical or behavioral characteristics of the individual such as signature, face, fingerprint, voice and iris. With a growing emphasis on human identification, iris recognition has recently received increasing attention. Performance of iris recognition scheme depends on the isolation of the iris region from rest of the eye image. In this research, Iris as one of the components of an eye image is chosen due to its uniqueness and stability. Iris recognition scheme involves Acquisition, Localization, Normalization, Feature extraction and Matching. Iris localization is the most significant and crucial stage in iris recognition system, because it determines the inner boundary and outer boundary in an eye image. In conventional localization methods, the inner and outer boundaries are modeled as two circles, but in actual fact, both boundaries are near-circular contour rather than perfect circles. For this research, the non-ideal iris images which are acquired in unconstrained environments are used (i.e. image with bright spots, non uniform intensity, eyelids and eyelashes occlusion). Firstly, Gaussian filter is applied as pre-processing to reduce the iris image noises and then Chan-Vese model to detect the inner boundary and localize pupil region. Next, Gaussian filter is applied again to reduce the effect of eyelids and eyelashes for faster and easier detection of the outer boundary. Finally, Variational Level Set Formulation of Active Contours without Re-initialization is applied to localize the outer boundary. Experimental results of CASIA-Iris-Interval Version 3 database show that the performance of the proposed method is very encouraging with 98.39% accuracy rate.
机译:生物识别技术是根据个人的身体或行为特征(例如签名,面部,指纹,语音和虹膜)识别人的身份的科学。随着对人类识别的日益重视,虹膜识别近来受到越来越多的关注。虹膜识别方案的性能取决于虹膜区域与眼睛图像其余部分的隔离。在这项研究中,虹膜由于其独特性和稳定性而被选为人眼图像的组成部分之一。虹膜识别方案涉及采集,定位,归一化,特征提取和匹配。虹膜定位是虹膜识别系统中最重要,最关键的阶段,因为它确定了眼睛图像的内部边界和外部边界。在传统的定位方法中,内部和外部边界被建模为两个圆,但是实际上,两个边界都是接近圆形的轮廓,而不是完美的圆形。对于这项研究,使用在不受限制的环境中获取的非理想虹膜图像(即具有亮点,强度不均匀,眼睑和睫毛闭塞的图像)。首先,采用高斯滤波器作为预处理以减少虹膜图像噪声,然后使用Chan-Vese模型检测内部边界并定位瞳孔区域。接下来,再次应用高斯滤镜以减少眼睑和睫毛的影响,从而更快,更轻松地检测外边界。最后,无需重新初始化就可以使用主动轮廓的变分级别集公式来定位外边界。 CASIA-Iris-Interval版本3数据库的实验结果表明,该方法的性能令人鼓舞,准确率达98.39%。

著录项

  • 作者

    Mohammed Ali Qadir Kamal;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号