首页> 外文OA文献 >Improved covariance matrix evolution strategy algorithm for stochastic dynamic unequal area facility layouts in an open area
【2h】

Improved covariance matrix evolution strategy algorithm for stochastic dynamic unequal area facility layouts in an open area

机译:改进的协方差矩阵演化策略在空域随机动态不等面积设施布局中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Facility layout problems deal with layout of facilities, machines, cells, or departments in a shop floor. This research has formulated unequal area stochastic dynamic facility layout problems in an open or wall-less area in order to minimize the upper bound of the sum of the material handling costs, and the sum of the shifting costs in the whole time planning horizon. In addition, the areas and shapes of departments are fixed during the iteration of an algorithm and throughout the time horizon. In unequal area stochastic dynamic facility layout problems, there are several periods for the material flow among departments or product demand such that the material flow among departments or product demand is not stable in each period. In other words, the product demand is stochastic with a known expected value and standard deviation in each period. In this research, a new mixed integer nonlinear programming mathematical model was proposed for solving this type of problems. Particularly, they are non-deterministic polynomial-time hard and very complex, and exact methods could not solve them within a reasonable computational time. Therefore, meta-heuristic algorithms and evolution strategies are needed to solve them. In this research, a modified covariance matrix adaptation evolution strategy algorithm was developed and the results were compared with two improved meta-heuristic algorithms (improved particle swarm optimization and modified genetic algorithm). These two meta-heuristic algorithms were developed and used to justify the efficiency of the proposed evolution strategy algorithm. The proposed algorithms applied four methods, which are (1) department swapping method, (2) local search method 1, (3) period swapping method, and (4) local search method 2, to prevent local optima and improve the quality of solutions for the problems. The proposed algorithms and the proposed mathematical model were validated using manual and graphical inspection methods, respectively. The trial and error method was applied to set the respective parametric values of the proposed algorithms in order to achieve better layouts. A real case and a theoretical problem were introduced to test the proposed algorithms. The results showed that the proposed covariance matrix adaptation evolution strategy has found better solutions in contrast to the proposed particle swarm optimization and genetic algorithm.
机译:设施布局问题涉及车间中设施,机器,单元或部门的布局。这项研究提出了在空旷或无墙的区域中不等面积的随机动态设施布局问题,以最大程度地减少整个计划时间范围内的物料搬运成本总和转移成本总和的上限。此外,部门的面积和形状在算法迭代期间和整个时间范围内都是固定的。在不等面积的随机动态设施布局问题中,部门或产品需求之间的物料流存在多个时期,因此每个时期部门或产品需求之间的物料流都不稳定。换句话说,产品需求是随机的,每个时期的期望值和标准差都已知。在这项研究中,提出了一种新的混合整数非线性规划数学模型来解决这类问题。特别是,它们是不确定的多项式时间,而且非常复杂,精确的方法无法在合理的计算时间内解决它们。因此,需要元启发式算法和进化策略来解决它们。在这项研究中,开发了一种改进的协方差矩阵适应进化策略算法,并将结果与​​两种改进的元启发式算法(改进的粒子群算法和改进的遗传算法)进行了比较。开发了这两种元启发式算法,并将其用于证明所提出的进化策略算法的有效性。所提出的算法应用了四种方法:(1)部门调换方法,(2)局部搜索方法1,(3)周期调换方法和(4)局部搜索方法2,以防止局部最优并提高解的质量对于问题。分别使用手动和图形检查方法对提出的算法和提出的数学模型进行了验证。应用试错法来设置所提出算法的各个参数值​​,以实现更好的布局。介绍了一个实际案例和一个理论问题来测试所提出的算法。结果表明,与提出的粒子群算法和遗传算法相比,提出的协方差矩阵自适应进化策略找到了更好的解决方案。

著录项

  • 作者

    Ali Derakhshanasl;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号