首页> 外文OA文献 >Numerical modelling of high-frequency ground-penetrating radar antennas
【2h】

Numerical modelling of high-frequency ground-penetrating radar antennas

机译:高频探地雷达天线的数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ground-Penetrating Radar (GPR) is a non-destructive electromagnetic investigativeudtool used in many applications across the fields of engineering andudgeophysics. The propagation of electromagnetic waves in lossy materials isudcomplex and over the past 20 years, the computational modelling of GPR hasuddeveloped to improve our understanding of this phenomenon.udThis research focuses on the development of accurate numerical models ofudwidely-used, high-frequency commercial GPR antennas. High-frequency, highresolutionudGPR antennas are mainly used in civil engineering for the evaluationudof structural features in concrete i. e., the location of rebars, conduits, voidsudand cracking. These types of target are typically located close to the surfaceudand their responses can be coupled with the direct wave of the antenna. Mostudnumerical simulations of GPR only include a simple excitation model, such as anudinfinitesimal dipole, which does not represent the actual antenna. By omittingudthe real antenna from the model, simulations cannot accurately replicate theudamplitudes and waveshapes of real GPR responses.udNumerical models of a 1.5 GHz Geophysical Survey Systems, Inc. (GSSI) antennaudand a 1.2 GHz MALÅ GeoScience (MALÅ) antenna have been developed.udThe geometry of antennas is often complex with many fine features that must beudcaptured in the numerical models. To visualise this level of detail in 3d, softwareudwas developed to link Paraview—an open source visualisation application whichuduses the Visualisation Toolkit (VTK)—with GprMax3D—electromagnetic simulationudsoftware based on the Finite-Difference Time-Domain (FDTD) method.udCertain component values from the real antennas that were required for theudmodels could not be readily determined due to commercial sensitivity. Valuesudfor these unknown parameters were found by implementing an optimisationudtechnique known as Taguchi’s method. The metric used to initially assessudthe accuracy of the antenna models was a cross-corellation of the crosstalkudresponses from the models with the crosstalk responses measured from the realudantennas. A 98 % match between modelled and real crosstalk responses wasudachieved.udFurther validation of the antenna models was undertaken using a series ofudlaboratory experiments where oil-in-water (O/W) emulsions were created toudsimulate the electrical properties of real materials. The emulsions providedudhomogeneous liquids with controllable permittivity and conductivity and enableduddifferent types of targets, typically encountered with GPR, to be tested. The laboratory setup was replicated in simulations which included the antennaudmodels and an excellent agreement was shown between the measured andudmodelled data. The models reproduced both the amplitude and waveshape ofudthe real responses whilst B-scans showed that the models were also accuratelyudcapturing effects, such as masking, present in the real data. It was shownudthat to achieve this accuracy, the real permittivity and conductivity profiles ofudmaterials must be correctly modelled.udThe validated antenna models were then used to investigate the radiationuddynamics of GPR antennas. It was found that the shape and directivity ofudtheoretically predicted far-field radiation patterns differ significantly from realudantenna patterns. Being able to understand and visualise in 3d the antennaudpatterns of real GPR antennas, over realistic materials containing typicaludtargets, is extremely important for antenna design and also from a practicaluduser perspective.
机译:探地雷达(GPR)是一种无损电磁调查工具,广泛用于工程和预算物理领域。电磁波在有损材料中的传播是复杂的,在过去的20年中,GPR的计算模型已经发展,从而增进了我们对这种现象的理解。本研究着重于开发广泛使用的精确数值模型。 ,高频商用GPR天线。高频,高分辨率 udGPR天线主要用于土木工程中,以评估混凝土的结构特征。例如,钢筋,导管,空隙 udand开裂的位置。这些类型的目标通常位于靠近表面的地方,它们的响应可以与天线的直接波耦合。 GPR的大多数数字模拟仅包括一个简单的激励模型,例如 uumfinitesimal偶极子,它不代表实际的天线。通过从模型中省略 ud真实天线,模拟无法准确地复制真实GPR响应的幅度和波形。 ud 1.5 GHz地球物理测量系统有限公司(GSSI)天线的数值模型 ud和1.2 GHzMALÅGeoScience(MALÅ)天线的几何形状通常很复杂,具有许多必须在数值模型中捕获的精细特征。为了在3d中可视化此详细级别,开发了软件 ud来链接Paraview(一个开源可视化应用程序,该可视化工具包(VTK)与GprMax3D一起使用)与电磁仿真 udsoftware(基于有限时域(FDTD)) )方法。由于商业敏感性,无法轻易确定udmodel所需的真实天线的某些分量值。通过实施称为Taguchi方法的优化 udtechnique,可以找到这些未知参数的值 ud。最初用于评估天线模型的准确性的度量标准是来自模型的串扰响应与实际天线所测得的串扰响应的交叉关联。建模和实际的串扰响应之间达到了98%的匹配。 ud使用一系列非实验室实验对天线模型进行了进一步验证,其中创建了水包油(O / W)乳状液以模拟电性能真实材料。乳剂为非均相液体提供了可控的介电常数和电导率,并使能够测试的GPR通常遇到的不同目标类型。在包括天线 udmodels在内的仿真中复制了实验室设置,并且在测量和 udmodeled数据之间显示出极好的一致性。该模型再现了真实响应的幅度和波形,而B扫描显示该模型还准确地捕捉了真实数据中存在的效果,例如掩蔽。结果表明, ud要达到此精度,必须正确模拟材料的实际介电常数和电导率分布。 ud然后使用经过验证的天线模型研究GPR天线的辐射 uddynamics。已经发现,理论上预测的远场辐射方向图的形状和方向性与真实天线方向图有很大不同。在包含典型 udtargets的逼真的材料上,能够在3d中理解和可视化实际GPR天线的天线 udpattern对天线设计以及从实用 uduser角度来说都是极为重要的。

著录项

  • 作者

    Warren Craig;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号