首页> 外文OA文献 >Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models
【2h】

Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models

机译:ARFIMA模型的远程依赖性和重尾分布参数的系统推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Long-Range Dependence (LRD) and heavy-tailed distributions are ubiquitous in natural and socio-economic data. Such data can be self-similar whereby both LRD and heavy-tailed distributions contribute to the self-similarity as measured by the Hurst exponent. Some methods widely used in the physical sciences separately estimate these two parameters, which can lead to estimation bias. Those which do simultaneous estimation are based on frequentist methods such as Whittle’s approximate maximum likelihood estimator. Here we present a new and systematic Bayesian framework for the simultaneous inference of the LRD and heavy-tailed distribution parameters of a parametric ARFIMA model with non-Gaussian innovations. As innovations we use the α-stable and t-distributions which have power law tails. Our algorithm also provides parameter uncertainty estimates. We test our algorithm using synthetic data, and also data from the Geostationary Operational Environmental Satellite system (GOES) solar X-ray time series. These tests show that our algorithm is able to accurately and robustly estimate the LRD and heavy-tailed distribution parameters.
机译:在自然和社会经济数据中,远距离依赖关系(LRD)和重尾分布无处不在。这样的数据可以是自相似的,由此LRD和重尾分布都可以促进自相似性,如赫斯特指数所衡量的。物理学中广泛使用的某些方法分别估计这两个参数,这可能导致估计偏差。那些同时进行估计的方法是基于频繁使用的方​​法,例如Whittle的近似最大似然估计器。在这里,我们提出了一个新的系统的贝叶斯框架,用于通过非高斯创新同时推断参数ARFIMA模型的LRD和重尾分布参数。作为创新,我们使用具有幂律尾部的α稳定和t分布。我们的算法还提供参数不确定性估计。我们使用合成数据以及对地静止作战环境卫星系统(GOES)太阳X射线时间序列的数据测试算法。这些测试表明,我们的算法能够准确,可靠地估计LRD和重尾分布参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号