首页> 外文OA文献 >A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines
【2h】

A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines

机译:通过模糊逻辑和极限学习机集成的神经模糊推理系统

摘要

This paper investigates the feasibility of applying a relatively novel neural network technique, i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference system. The proposed method is an improved version of the regular neuro-fuzzy TSK fuzzy inference system. For the proposed method, first, the data that are processed are grouped by the k-means clustering method. The membership of arbitrary input for each fuzzy rule is then derived through an ELM, followed by a normalization method. At the same time, the consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the approximate prediction value is determined by a weight computation scheme. For the ELM-based TSK fuzzy inference system, two extensions are also proposed to improve its accuracy. The proposed methods can avoid the curse of dimensionality that is encountered in backpropagation and hybrid adaptive neuro-fuzzy inference system (ANFIS) methods. Moreover, the proposed methods have a competitive performance in training time and accuracy compared to three ANFIS methods.
机译:本文研究了应用相对新颖的神经网络技术(即极限学习机(ELM))来实现神经模糊的Takagi-Sugeno-Kang(TSK)模糊推理系统的可行性。该方法是常规神经模糊TSK模糊推理系统的改进版本。对于所提出的方法,首先,通过k均值聚类方法对处理的数据进行分组。然后,通过ELM导出每个模糊规则的任意输入的隶属关系,然后采用归一化方法。同时,模糊规则的结果部分是由多个ELM获得的。最后,通过权重计算方案确定近似预测值。对于基于ELM的TSK模糊推理系统,还提出了两个扩展以提高其准确性。所提出的方法可以避免在反向传播和混合自适应神经模糊推理系统(ANFIS)方法中遇到的维数诅咒。此外,与三种ANFIS方法相比,所提出的方法在训练时间和准确性上具有竞争优势。

著录项

  • 作者

    Sun Z; Au KF; Choi TM;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号