首页> 外文OA文献 >Feature selection for monotonic classification
【2h】

Feature selection for monotonic classification

机译:单调分类的特征选择

摘要

Monotonic classification is a kind of special task in machine learning and pattern recognition. Monotonicity constraints between features and decision should be taken into account in these tasks. However, most existing techniques are not able to discover and represent the ordinal structures in monotonic datasets. Thus, they are inapplicable to monotonic classification. Feature selection has been proven effective in improving classification performance and avoiding overfitting. To the best of our knowledge, no technique has been specially designed to select features in monotonic classification until now. In this paper, we introduce a function, which is called rank mutual information, to evaluate monotonic consistency between features and decision in monotonic tasks. This function combines the advantages of dominance rough sets in reflecting ordinal structures and mutual information in terms of robustness. Then, rank mutual information is integrated with the search strategy of min-redundancy and max-relevance to compute optimal subsets of features. A collection of numerical experiments are given to show the effectiveness of the proposed technique.
机译:单调分类是机器学习和模式识别中的一种特殊任务。这些任务中应考虑特征与决策之间的单调性约束。但是,大多数现有技术无法发现和表示单调数据集中的序数结构。因此,它们不适用于单调分类。事实证明,特征选择可有效提高分类性能并避免过度拟合。据我们所知,到目前为止,还没有专门设计技术来选择单调分类中的特征。在本文中,我们引入了一种称为秩互信息的函数,用于评估单调任务中特征与决策之间的单调一致性。此功能结合了优势粗糙集在反映顺序结构和互信息方面的优势(如鲁棒性)。然后,将等级互信息与最小冗余度和最大相关度的搜索策略集成在一起,以计算特征的最佳子集。数值实验的集合表明了该技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号