首页> 外文OA文献 >An Improved Fourier Five-Sensor (IF5S) method for separating straightness and yawing errors of a linear slide based on multiple sensor parameter sets and least square regression technique
【2h】

An Improved Fourier Five-Sensor (IF5S) method for separating straightness and yawing errors of a linear slide based on multiple sensor parameter sets and least square regression technique

机译:基于多个传感器参数集和最小二乘回归技术的线性滑轨直线度和偏航误差分离的改进傅里叶五传感器(IF5S)方法

摘要

In this paper, an Improved Fourier Five-Sensor (IF5S) measurement method is proposed for separating the straightness and yawing motion errors as well as determining the profile of a linear slide. The previous F5S method [3] used the constant parameters initially to estimate the profile function based on three sensor equations for different angle ranges. The profile estimation and error separation are implemented via an iterative method which can only yield acceptably accurate results with tremendous computational efforts. Here, the improved F5S method applies the least square regression technique instead of the iterative method to estimate the profile functions by using three distinct sets of parameters and different fused sensor data according to the travel of the linear slide. Various errors can then be separated based on the calculated profile function. Simulation results confirm that the IF5S method provides better performance and effectiveness as compared to the previous F5S method.
机译:本文提出了一种改进的傅立叶五传感器(IF5S)测量方法,用于分离直线度和偏航运动误差以及确定线性滑轨的轮廓。先前的F5S方法[3]最初使用常数参数来基于针对不同角度范围的三个传感器方程估算轮廓函数。轮廓估计和误差分离是通过迭代方法实现的,该方法只能通过大量的计算工作才能产生可​​接受的准确结果。在这里,改进的F5S方法应用最小二乘回归技术而不是迭代方法,根据线性滑块的行程,通过使用三组不同的参数和不同的融合传感器数据来估计轮廓函数。然后可以基于计算出的轮廓函数来分离各种错误。仿真结果证实,与以前的F5S方法相比,IF5S方法提供了更好的性能和有效性。

著录项

  • 作者

    Fung EHK; Zhu M;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号