首页> 外文OA文献 >Variational bayes inference based segmentation of heterogeneous lymphoma volumes in dual-modality PET-CT images
【2h】

Variational bayes inference based segmentation of heterogeneous lymphoma volumes in dual-modality PET-CT images

机译:双模式PET-CT图像中基于变异贝叶斯推断的异种淋巴瘤体积分割

摘要

Accurate segmentation of heterogeneous carcinoma lesions in medical images is vital to the treatment planning, assessment of therapy response and other oncological applications. With current state-of-the-art imaging modalities, the CT images enhance the interpretation of cancer functional abnormalities. We applied the variational Bayes inference (VBI) model on both anatomical and functional information for delineating lesion boundary. The model is improved by clinical meaningful initialisation. Clinical data consisting of eight lesions with inhomogeneous carcinoma distribution were used to evaluate the model accuracy. Our algorithm is capable of isolating lesions from background with higher accuracy comparing to the wildly used threshold (40% of SUVmax). The VBI segmentation error is less than 6.11% ± 4.92% which is much better than the results performed by fixed threshold method. The experimental results show that our novel statistic method can produce more accurate segmentation of heterogeneous lymphoma volume in PET-CT images.
机译:医学图像中异质癌病变的准确分割对于治疗计划,治疗反应评估和其他肿瘤学应用至关重要。使用当前最先进的成像方式,CT图像可增强对癌症功能异常的解释。我们在解剖学和功能信息上应用了变分贝叶斯推断(VBI)模型来描绘病变边界。通过临床有意义的初始化来改进该模型。临床数据由八个具有不均匀癌分布的病变组成,用于评估模型的准确性。与常用阈值(SUVmax的40%)相比,我们的算法能够以更高的精度将病变从背景中分离出来。 VBI分割误差小于6.11%±4.92%,这比固定阈值方法执行的结果要好得多。实验结果表明,我们的新统计方法可以对PET-CT图像中的异种淋巴瘤体积进行更准确的分割。

著录项

  • 作者

    Wang J; Xia Y; Feng D;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号