首页> 外文OA文献 >An adaptive recognition model for image annotation
【2h】

An adaptive recognition model for image annotation

机译:图像标注的自适应识别模型

摘要

In this paper, an adaptive recognition model (ARM) is proposed for image annotation. The ARM consists of an adaptive classification network (CFN) and a nonlinear correlation network (CLN). The adaptive CFN aims to annotate an image with keywords, and the CLN is used to unveil the correlative information of keywords for annotation refinement. Image annotation is carried out by an ARM in two stages. In the first stage, the features extracted from regions of the input image are fed to a CFN to produce classification labels. In the second stage, the CLN uses keyword correlations learned from the training images to refine the classification result. The ARM works in a forward-propagating manner, resulting in high efficiency in image annotation. Furthermore, the computational time of an ARM is insensitive to the number of regions of the input image and the vocabulary size. In this paper, the effect of keyword correlation in image annotation is, comprehensively, investigated on a real image dataset and a synthetic image dataset. The exploitation of a controllable synthetic dataset helps to systematically study the function of keyword correlation and effectively analyze the performance of the ARM. Experimental results demonstrate the efficiency and effectiveness of the ARM.
机译:本文提出了一种自适应识别模型(ARM)用于图像标注。 ARM由自适应分类网络(CFN)和非线性相关网络(CLN)组成。自适应CFN旨在用关键字对图像进行注释,而CLN用于揭示关键字的相关信息以进行注释精炼。图像注释由ARM分两个阶段执行。在第一阶段,将从输入图像区域中提取的特征馈送到CFN以生成分类标签。在第二阶段,CLN使用从训练图像中学到的关键字相关性来细化分类结果。 ARM以向前传播的方式工作,从而提高了图像注释的效率。此外,ARM的计算时间对输入图像的区域数和词汇量不敏感。本文在真实图像数据集和合成图像数据集上全面研究了关键字相关性在图像注释中的作用。可控合成数据集的开发有助于系统地研究关键字相关功能,并有效地分析ARM的性能。实验结果证明了ARM的效率和有效性。

著录项

  • 作者

    Chen Z; Fu H; Chi Z; Feng DD;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号