首页> 外文OA文献 >Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition
【2h】

Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition

机译:基于EEMD分解的人工神经网络提高中长期径流预报精度。

摘要

Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting.
机译:水文时间序列预测是现代水文学中最重要的应用之一,尤其是对于有效的水库管理而言。在这项研究中,提出了一种人工神经网络(ANN)模型与整体经验模式分解(EEMD)相结合的方法来预测中长期径流时间序列。首先,使用EEMD技术将原始径流时间序列分解为有限的,通常为数很少的固有模式函数(IMF)和残差序列,以更深入地了解数据特征。然后,通过适当的ANN模型分别预测所有IMF成分和残基。最后,对建模的IMF和残差序列的预测结果求和,以得出原始年度径流序列的整体预测。利用基于四种性能评价指标(RMSE,MAPE,R和NSEC)的改进模型,研究了来自中国Biuliuhe和Mopanshan的两个年度水库径流时间序列。这项工作获得的结果表明,EEMD可以有效地提高预报准确性,并且所提出的EEMD-ANN模型在中长期径流时间序列预报方面比ANN方法有显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号