首页> 外文OA文献 >Diesel engine modelling using extreme learning machine under scarce and exponential data sets
【2h】

Diesel engine modelling using extreme learning machine under scarce and exponential data sets

机译:在稀疏和指数数据集下使用极限学习机进行柴油机建模

摘要

To predict the performance of a diesel engine, current practice relies on the use of black-box identification where numerous experiments must be carried out in order to obtain numerical values for model training. Although many diesel engine models based on artificial neural networks (ANNs) have already been developed, they have many drawbacks such as local minima, user burden on selection of optimal network structure, large training data size and poor generalization performance, making themselves difficult to be put into practice. This paper proposes to use extreme learning machine (ELM), which can overcome most of the aforementioned drawbacks, to model the emission characteristics and the brake-specific fuel consumption of the diesel engine under scarce and exponential sample data sets. The resulting ELM model is compared with those developed using popular ANNs such as radial basis function neural network (RBFNN) and advanced techniques such as support vector machine (SVM) and its variants, namely least squares support vector machine (LS-SVM) and relevance vector machine (RVM). Furthermore, some emission outputs of diesel engines suffer from the problem of exponentiality (i.e., the output y grows up exponentially along input x) that will deteriorate the prediction accuracy. A logarithmic transformation is therefore applied to preprocess and post-process the sample data sets in order to improve the prediction accuracy of the model. Evaluation results show that ELM with the logarithmic transformation is better than SVM, LS-SVM, RVM and RBFNN with/without the logarithmic transformation, regardless the model accuracy and training time.
机译:为了预测柴油发动机的性能,当前的实践依赖于黑匣子识别的使用,在黑匣子识别中必须进行大量实验才能获得用于模型训练的数值。尽管已经开发了许多基于人工神经网络(ANN)的柴油机模型,但它们具有许多缺点,例如局部最小值,用户选择最佳网络结构的负担,训练数据量大和泛化性能差,使其自身难以被开发。实行。本文建议使用极限学习机(ELM)来克服上述大多数缺点,以在稀疏和指数样本数据集下对柴油机的排放特性和特定于制动的燃料消耗进行建模。将生成的ELM模型与使用流行的ANN(例如径向基函数神经网络(RBFNN))和先进技术(例如支持向量机(SVM)及其变体,即最小二乘支持向量机(LS-SVM))和相关性开发的模型进行比较向量机(RVM)。此外,柴油机的一些排放输出遭受指数问题(即,输出y沿着输入x成指数增长),这将降低预测精度。因此,将对数转换应用于样本数据集的预处理和后处理,以提高模型的预测准确性。评估结果表明,无论模型的准确性和训练时间如何,采用对数变换的ELM均优于或不采用对数变换的SVM,LS-SVM,RVM和RBFNN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号