首页> 外文OA文献 >An integrated method based on DInSAR, MAI and displacement gradient tensor for mapping the 3D coseismic deformation field related to the 2011 Tarlay earthquake (Myanmar)
【2h】

An integrated method based on DInSAR, MAI and displacement gradient tensor for mapping the 3D coseismic deformation field related to the 2011 Tarlay earthquake (Myanmar)

机译:基于DInSAR,MAI和位移梯度张量的集成方法,用于绘制与2011年Tarlay地震(缅甸)有关的3D同震形变场

摘要

The satellite differential interferometric synthetic aperture radar (DInSAR) technology has been widely applied for mapping the ground deformation associated with the geophysical events such as earthquakes. However, the conventional DInSAR can measure only the one-dimensional (1D) ground displacement along the radar line of sight (LOS), and the crucial displacement measurements, e.g., near the epicenter and along the surface ruptures, are usually not available or degraded in quality due to the significant deformation gradients. With availability of satellite SAR images acquired along ascending and descending orbits, this paper proposes an integrated method to map the three-dimensional (3D) coseismic deformation field by combining DInSAR for detecting LOS displacements, the multiple aperture interferometry (MAI) for detecting along-track displacements, and the displacement gradient tensor (DGT) model for characterizing spatial correlation of ground displacements. The proposed method (termed as InSAR–DGT) was first tested through an experiment of recovering 3D displacements from a simulated coseismic deformation field. We then applied the proposed method to map the 3D coseismic deformation field related to the 2011 Tarlay earthquake (Myanmar) by using the ascending and descending ALOS PALSAR images. Both the results derived for the simulated experiment and the 2011 Tarlay earthquake show that the quality of the 3D coseismic displacements can be raised efficiently by the InSAR–DGT method, and the precisions in the east–west (E–W), north–south (N–S) and up–down (U–D) displacements for the 2011 Tarlay earthquake are increased 22%, 36% and 24%, respectively. The validation indicates that the improved coseismic deformation field for the 2011 Tarlay earthquake is in good agreement with the deformation field simulated from the existing optimized fault model. The number of the missing data points in the 3D coseismic deformation field can be reduced significantly by the InSAR–DGT method. It is revealed that the causative fault (i.e., the west part of the Nam Ma Fault) for the Tarlay earthquake generated a left-lateral slip that was accompanied by a minor normal dip-slip component. The careful interpretation demonstrates that the causative fault structures include the determined main fault segment and the two suspected branched segments at east of the Tarlay town.
机译:卫星差分干涉式合成孔径雷达(DInSAR)技术已被广泛用于绘制与地震等地球物理事件相关的地面变形图。但是,传统的DInSAR只能测量沿雷达视线(LOS)的一维(1D)地面位移,并且关键位移测量(例如震中附近和沿表面破裂的测量)通常不可用或不可靠由于明显的变形梯度而在质量上有所提高。考虑到沿上升和下降轨道获取的卫星SAR图像的可用性,本文提出了一种综合方法,该方法通过结合DInSAR用于检测LOS位移,多孔径干涉仪(MAI)来检测三维(3D)同震形变场-轨道位移,以及用于表征地面位移空间相关性的位移梯度张量(DGT)模型。提议的方法(称为InSAR–DGT)首先通过从模拟同震变形场中恢复3D位移的实验进行了测试。然后,我们使用上升和下降的ALOS PALSAR图像,将提出的方法应用于与2011年Tarlay地震(缅甸)有关的3D同震形变场的地图绘制。模拟实验和2011年Tarlay地震的结果均表明,InSAR-DGT方法可以有效提高3D同震位移的质量,东西向(E-W),南北向的精度2011年塔雷地震的地震(NS)和上下(UD)位移分别增加了22%,36%和24%。验证表明,改进的2011年Tarlay地震同震形变场与现有优化断层模型模拟的形变场吻合良好。通过InSAR–DGT方法,可以显着减少3D同震变形字段中丢失的数据点的数量。结果表明,塔拉地震的致病性断层(即南马断层的西部)产生了左侧滑移,并伴有少量的正常倾滑分量。仔细的解释表明,致病性断层结构包括确定的主要断层段和塔莱镇以东的两个可疑分支段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号