首页> 外文OA文献 >Web person disambiguation using hierarchical co-reference model
【2h】

Web person disambiguation using hierarchical co-reference model

机译:使用分层共指模型的Web人消歧

摘要

As one of the entity disambiguation tasks, Web Person Disambiguation (WPD) identifies different persons with the same name by grouping search results for different persons into different clusters. Most of current research works use clustering methods to conduct WPD. These approaches require the tuning of thresholds that are biased towards training data and may not work well for different datasets. In this paper, we propose a novel approach by using pairwise co-reference modeling for WPD without the need to do threshold tuning. Because person names are named entities, disambiguation of person names can use semantic measures using the so called co-reference resolution criterion across different documents. The algorithm first forms a forest with person names as observable leaf nodes. It then stochastically tries to form an entity hierarchy by merging names into a sub-tree as a latent entity group if they have co-referential relationship across documents. As the joining/partition of nodes is based on co-reference-based comparative values, our method is independent of training data, and thus parameter tuning is not required. Experiments show that this semantic based method has achieved comparable performance with the top two state-of-the-art systems without using any training data. The stochastic approach also makes our algorithm to exhibit near linear processing time much more efficient than HAC based clustering method. Because our model allows a small number of upper-level entity nodes to summarize a large number of name mentions, the model has much higher semantic representation power and it is much more scalable over large collections of name mentions compared to HAC based algorithms.
机译:作为实体消除歧义的任务之一,Web Person Disambiguation(WPD)通过将针对不同人员的搜索结果分组到不同的群集中来识别具有相同名称的不同人员。当前大多数研究工作都使用聚类方法进行WPD。这些方法需要调整偏向训练数据的阈值,并且可能不适用于不同的数据集。在本文中,我们提出了一种通过使用成对共参考建模进行WPD的新颖方法,而无需进行阈值调整。因为人名是命名实体,所以人名的歧义可以使用语义度量,该语义度量使用跨不同文档的所谓共引用解析标准。该算法首先形成一个以人名作为可观察叶节点的森林。然后,如果名称在文档之间具有关联关系,则通过将名称合并到作为潜在实体组的子树中,以随机方式尝试形成实体层次结构。由于节点的加入/分区基于基于共同引用的比较值,因此我们的方法独立于训练数据,因此不需要参数调整。实验表明,这种基于语义的方法在不使用任何训练数据的情况下,可以与前两个最先进的系统实现相当的性能。随机方法还使我们的算法比基于HAC的聚类方法具有更高的线性处理时间。由于我们的模型允许少量的上层实体节点汇总大量的名称提及,因此与基于HAC的算法相比,该模型具有更高的语义表示能力,并且在大量名称提及方面具有更大的可扩展性。

著录项

  • 作者

    Xu J; Lu Q; Li ML; Li WJ;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号