首页> 外文OA文献 >Constructing input to neural networks for modeling temperature-caused modal variability : mean temperatures, effective temperatures, and principal components of temperatures
【2h】

Constructing input to neural networks for modeling temperature-caused modal variability : mean temperatures, effective temperatures, and principal components of temperatures

机译:构造神经网络的输入以对温度引起的模态可变性进行建模:平均温度,有效温度和温度的主要成分

摘要

In this study, the construction of appropriate input to neural networks for modeling the temperature-caused modal variability is addressed with intent to enhance the reproduction and prediction capabilities of the formulated correlation models. Available for this study are 770 h modal frequency and temperature data that were obtained from the instrumented cable-stayed Ting Kau Bridge in Hong Kong. With the temperature data measured at different portions of the bridge, three kinds of input, i.e., mean temperatures, effective temperatures, and principal components (PCs) of temperatures, are constructed as input to neural networks for modeling the correlation between the modal frequencies and environmental temperatures. By dividing the 770 h modal frequency and temperature data into training data set, validation data set and testing data set, an optimally configured back-propagation neural network (BPNN) is formulated for each kind of input, in which the validation data are utilized to determine the optimal number of hidden nodes while the early stopping technique is applied to optimize the BPNN parameters. Then the reproduction and prediction performance of the BPNNs configured with the three kinds of input is examined and compared in respect of the seen training data set and the unseen testing data set, respectively. It is revealed that the temperature profile characterized by the effective temperatures is insufficient for formulating a good correlation model between the modal frequencies and temperatures. When a sufficient number of PCs are used, the BPNN with input of the PCs of temperatures performs better than the BPNN with input of the mean temperatures in both reproduction and prediction capabilities.
机译:在这项研究中,解决了为建模温度引起的模态可变性而对神经网络进行适当输入的构造,目的是增强所制定相关模型的再现和预测能力。这项研究可获得770小时的模态频率和温度数据,这些数据是从香港的仪器化斜拉桥汀九桥获得的。利用在桥梁的不同部分测得的温度数据,构建了三种输入,即平均温度,有效温度和温度的主分量(PC),作为神经网络的输入,用于对模态频率与模态频率之间的相关性进行建模。环境温度。通过将770 h模态频率和温度数据分为训练数据集,验证数据集和测试数据集,为每种输入建立了最优配置的反向传播神经网络(BPNN),其中利用验证数据来确定最佳隐藏节点数,同时应用早期停止技术优化BPNN参数。然后,分别针对可见的训练数据集和不可见的测试数据集检查和比较配置有三种输入的BPNN的再现和预测性能。结果表明,以有效温度为特征的温度曲线不足以在模态频率和温度之间建立良好的相关模型。当使用足够数量的PC时,在输入PC的温度时,BPNN的性能要优于在再现和预测功能中输入平均温度的BPNN。

著录项

  • 作者

    Zhou HF; Ni YQ; Ko JM;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号