首页> 外文OA文献 >3D head model classification by evolutionary optimization of the Extended Gaussian Image representation
【2h】

3D head model classification by evolutionary optimization of the Extended Gaussian Image representation

机译:通过扩展高斯图像表示的进化优化进行3D头部模型分类

摘要

Classification of 3D head models based on their shape attributes for subsequent indexing and retrieval are important in many applications, as in hierarchical content-based retrieval of these head models for virtual scene composition, and the automatic annotation of these characters in such scenes. While simple feature representations are preferred for more efficient classification operations, these features may not be adequate for distinguishing between the subtly different head model classes. In view of these, we propose an optimization approach based on genetic algorithm (GA) where the original model representation is transformed in such a way that the classification rate is significantly enhanced while retaining the efficiency and simplicity of the original representation. Specifically, based on the Extended Gaussian Image (EGI) representation for 3D models which summarizes the surface normal orientation statistics, we consider these orientations as random variables, and proceed to search for an optimal transformation for these variables based on genetic optimization. The resulting transformed distributions for these random variables are then used as the modified classifier inputs. Experiments have shown that the optimized transformation results in a significant improvement in classification results for a large variety of class structures. More importantly, the transformation can be indirectly realized by bin removal and bin count merging in the original histogram, thus retaining the advantage of the original EGI representation.
机译:在许多应用中,基于3D头部模型的形状属性进行分类以进行后续索引和检索非常重要,例如在基于层次内容的这些头部模型的虚拟内容构成的基于内容的检索以及这些场景中这些字符的自动标注中。尽管对于更有效的分类操作而言,首选简单的特征表示形式,但是这些特征可能不足以区分细微不同的头部模型类。鉴于这些,我们提出了一种基于遗传算法(GA)的优化方法,其中原始模型表示以这样一种方式进行转换,即在保持原始表示的效率和简单性的同时,显着提高了分类率。具体来说,基于3D模型的扩展高斯图像(EGI)表示,它总结了表面法线方向统计信息,我们将这些方向视为随机变量,然后基于遗传优化为这些变量寻找最佳变换。然后将这些随机变量的所得变换分布用作修改后的分类器输入。实验表明,针对多种类结构,优化的转换可显着改善分类结果。更重要的是,可以通过将仓位移除和仓位计数合并到原始直方图中间接实现转换,从而保留了原始EGI表示的优势。

著录项

  • 作者

    Wong HS; Cheung KKT; Ip HHS;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号