首页> 外文OA文献 >Classification of business travelers using SVMs combined with kernel principal component analysis
【2h】

Classification of business travelers using SVMs combined with kernel principal component analysis

机译:使用SVM与内核主成分分析相结合的商务旅行者分类

摘要

Data mining techniques for understanding the behavioral and demographic patterns of tourists have received increasing research interests due to the significant economic contributions of the fast growing tourism industry. However, the complexity, noise and nonlinearity in tourism data bring many challenges for existing data mining techniques such as rough sets and neural networks. This paper makes an attempt to develop a data mining approach to tourist expenditure classification based on support vector machines (SVMs) with kernel principal component analysis. Compared with previous methods, the proposed approach not only makes use of the generalization ability of SVMs, which is usually superior to neural networks and rough sets, but also applies a KPCA-based feature extraction method so that the classification accuracy of business travelers can be improved. Utilizing the primary data collected from an Omnibus survey carried out in Hong Kong in late 2005, experimental results showed that the classification accuracy of the SVM model with KPCA is better than other approaches including the previous rough set method and a GA-based selective neural network ensemble method.
机译:由于快速发展的旅游业对经济的巨大贡献,用于理解游客行为和人口统计学模式的数据挖掘技术受到了越来越多的研究兴趣。然而,旅游数据的复杂性,噪声和非线性给诸如粗糙集和神经网络之类的现有数据挖掘技术带来了许多挑战。本文尝试开发一种基于支持向量机(SVM)并进行核主成分分析的游客支出分类数据挖掘方法。与以前的方法相比,该方法不仅利用了支持向量机的泛化能力,通常优于神经网络和粗糙集,而且还采用了基于KPCA的特征提取方法,可以提高商务旅行者的分类精度。改善。利用从2005年底在香港进行的一项综合调查收集的原始数据,实验结果表明,使用KPCA对SVM模型进行分类的准确性要优于其他方法,包括以前的粗糙集方法和基于GA的选择性神经网络合奏法。

著录项

  • 作者

    Xin X; Law R; Wu T;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号