首页> 外文OA文献 >Bottleneck features from SNR-adaptive denoising deep classifier for speaker identification
【2h】

Bottleneck features from SNR-adaptive denoising deep classifier for speaker identification

机译:SNR自适应降噪深度分类器的瓶颈特征用于说话人识别

摘要

In this paper, we explore the potential of using deep learning for extracting speaker-dependent features for noise robust speaker identification. More specifically, an SNR-adaptive denoising classifier is constructed by stacking two layers of restricted Boltzmann machines (RBMs) on top of a denoising deep autoencoder, where the top-RBM layer is connected to a soft-max output layer that outputs the posterior probabilities of speakers and the top-RBM layer outputs speaker-dependent bottleneck features. Both the deep autoencoder and RBMs are trained by contrastive divergence, followed by backpropagation fine-tuning. The autoencoder aims to reconstruct the clean spectra of a noisy test utterance using the spectra of the noisy test utterance and its SNR as input. With this denoising capability, the output from the bottleneck layer of the classifier can be considered as a low-dimension representation of denoised utterances. These frame-based bottleneck features are than used to train an iVector extractor and a PLDA model for speaker identification. Experimental results based on a noisy YOHO corpus show that the bottleneck features slightly outperform the conventional MFCC under low SNR conditions and that fusion of the two features lead to further performance gain, suggesting that the two features are complementary with each other.
机译:在本文中,我们探索了使用深度学习提取与说话者相关的特征以增强对噪声的说话人识别的潜力。更具体地说,通过在降噪深度自动编码器的顶部堆叠两层受限的Boltzmann机器(RBM)来构建SNR自适应降噪分类器,其中,顶部RBM层连接到输出后验概率的soft-max输出层扬声器和顶层RBM层输出依赖于扬声器的瓶颈功能。深度自编码器和RBM均通过对比发散进行训练,然后进行反向传播微调。自动编码器旨在使用噪声测试话语的频谱及其SNR作为输入来重建噪声测试话语的纯净频谱。有了这种降噪功能,分类器瓶颈层的输出可以视为降噪话语的低维表示。这些基于帧的瓶颈功能随后被用于训练iVector提取器和PLDA模型以进行说话人识别。基于嘈杂的YOHO语料库的实验结果表明,在低SNR条件下,瓶颈功能略胜于常规MFCC,并且这两个功能的融合导致性能进一步提高,表明这两个功能是互补的。

著录项

  • 作者

    Tan Z; Mak MW;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号