首页> 外文OA文献 >MVPSys : toward practical multi-view based false alarm reduction system in network intrusion detection
【2h】

MVPSys : toward practical multi-view based false alarm reduction system in network intrusion detection

机译:MVPSys:面向实用的基于多视图的网络入侵检测虚假减少系统

摘要

Network intrusion detection systems (NIDSs) have been developed for over twenty years and have been widely deployed in computer networks to detect a variety of network attacks. But one of the major limitations is that these systems would generate a large number of alarms, especially false alarms (positives) during the detection. To address this issue, many machine learning approaches have been applied to reduce NIDS false positives. However, we notice that multi-view based approach is often ignored by the literature, which uses one function to model a particular view and jointly optimizes all the functions to optimize and improve the learning performance. In addition, most existing studies have not implemented their algorithms into practical alam systems. In this paper, we thus develop MVPSys, a practical multi-view based false alarm reduction system to reduce false alarms more efficiently, where each view represents a set of features. More specifically, we implement a semi-supervised learning algorithm to construct two-view items and automatically exploit both labeled and unlabeled data. That is, this system can automatically extract and organize features from an incoming alarm into two feature sets: destination feature set and source feature set, where the former contains the features related to the target environment and the latter contains the features about the source environment. In the evaluation, we deploy our system into two real network environments besides using two datasets. Experimental results indicate that our system can achieve a stable filtration accuracy of over 95%, offering a significant improvement as compared with the state-of-the-art algorithms.
机译:网络入侵检测系统(NIDS)已经开发了20多年,并且已广泛部署在计算机网络中以检测各种网络攻击。但是主要限制之一是这些系统将在检测过程中生成大量警报,尤其是错误警报(阳性)。为了解决这个问题,已经应用了许多机器学习方法来减少NIDS误报。但是,我们注意到,基于多视图的方法经常被文献忽略,该方法使用一个函数对特定视图进行建模,并共同优化所有函数以优化和改善学习性能。此外,大多数现有研究尚未将其算法实现到实际的alam系统中。因此,在本文中,我们开发了MVPSys,这是一种实用的基于多视图的错误警报减少系统,可以更有效地减少错误警报,其中每个视图代表一组功能。更具体地说,我们实现了一种半监督学习算法来构造两视图项目,并自动利用标记和未标记的数据。即,该系统可以自动将传入警报中的特征提取并组织成两个特征集:目标特征集和源特征集,其中前者包含与目标环境有关的特征,而后者包含与源环境有关的特征。在评估中,除了使用两个数据集之外,我们还将系统部署到两个实际的网络环境中。实验结果表明,我们的系统可以实现超过95%的稳定过滤精度,与最先进的算法相比,具有明显的改进。

著录项

  • 作者

    Li W; Meng W; Luo X; Kwok LF;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号