首页> 外文OA文献 >A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass
【2h】

A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass

机译:列车质量不确定的地铁时刻表和速度曲线综合优化的随机模型

摘要

The integrated timetable and speed profile optimization model has recently attracted more attention because of its good achievements on energy conservation in metro systems. However, most previous studies often ignore the spatial and temporal uncertainties of train mass, and the variabilities of tractive force, braking force and basic running resistance on energy consumption in order to simplify the model formulation and solution algorithm. In this paper, we develop an integrated metro timetable and speed profile optimization model to minimize the total tractive energy consumption, where these real-world operating conditions are explicitly considered in the model formulation and solution algorithm. Firstly, we formulate a two-phase stochastic programming model to determine the timetable and speed profile. Given the speed profile, the first phase determines the timetable by scheduling the arrival and departure times for each station, and the second phase determines the speed profile for each inter-station with the scheduled arrival and departure times. Secondly, we design a simulation-based genetic algorithm procedure incorporated with the optimal train control algorithm to find the optimal solution. Finally, we present a simple example and a real-world example based on the operation data from the Beijing Metro Yizhuang Line in Beijing, China. The results of the real-world example show that, during peak hours, off-peak hours and night hours, the total tractive energy consumptions can be reduced by: (1) 10.66%, 9.94% and 9.13% in comparison with the current timetable and speed profile; and (2) 3.35%, 3.12% and 3.04% in comparison with the deterministic model.
机译:集成的时间表和速度曲线优化模型由于在地铁系统的节能方面取得了良好的成就,最近引起了更多关注。然而,大多数先前的研究经常忽略列车质量的时空不确定性,以及牵引力,制动力和基本行驶阻力随能耗的变化,以简化模型的制定和求解算法。在本文中,我们开发了一个集成的地铁时间表和速度曲线优化模型,以最大程度地减少总牵引能耗,其中在模型制定和求解算法中明确考虑了这些实际操作条件。首先,我们制定了一个两阶段的随机规划模型,以确定时间表和速度曲线。给定速度曲线后,第一阶段通过安排每个站点的到达和离开时间来确定时间表,第二阶段通过计划的到达和离开时间来确定每个站点间的速度曲线。其次,我们设计了一种基于仿真的遗传算法程序,并结合了最优列车控制算法来找到最优解。最后,我们基于北京地铁亦庄线在中国北京的运行数据,给出了一个简单的示例和一个实际示例。实际示例的结果表明,在高峰时段,非高峰时段和夜间,总的牵引能耗可以减少:(1)与当前时间表相比,降低了10.66%,9.94%和9.13%和速度曲线; (2)与确定性模型相比,分别为3.35%,3.12%和3.04%。

著录项

  • 作者

    Yang X; Chen A; Ning B; Tang T;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号