首页> 外文OA文献 >PIASA: A power and interference aware resource management strategy for heterogeneous workloads in cloud data centers
【2h】

PIASA: A power and interference aware resource management strategy for heterogeneous workloads in cloud data centers

机译:PIASA:一种针对功耗和干扰的资源管理策略,适用于云数据中心中的异构工作负载

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%.
机译:云数据中心已在不同场景中逐步采用,这反映在执行具有不同工作负载和不同服务质量(QoS)要求的异构应用程序中。虚拟机(VM)技术简化了物理服务器中的资源管理,并帮助云提供商实现诸如能耗优化的目标。但是,由于共享相同物理资源的共同托管工作负载之间的干扰,无法保证VM中运行的应用程序的性能。此外,具有不同QoS要求的不同类型的共同托管应用程序以及云的动态行为使有效配置资源变得更加困难,并且在云数据中心中是一个具有挑战性的问题。在本文中,我们解决了运行不同类型的应用程序工作负载(尤其是CPU和网络密集型应用程序)的数据中心内的资源分配问题。为了解决这些挑战,我们提出了一种干扰感知和功耗感知的管理机制,该机制结合了性能偏差估计器和调度算法来指导虚拟化环境中的资源分配。我们通过注入合成工作负载进行仿真,这些工作负载的特征遵循最新版本的Google Cloud跟踪日志。结果表明,我们的性能增强策略能够满足现实环境中的合同SLA,同时将能源成本降低多达21%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号