首页> 外文OA文献 >Geo-demographic analysis in support of the United States Army Reserve (USAR) unit positioning and quality assessment model (UPQUAM)
【2h】

Geo-demographic analysis in support of the United States Army Reserve (USAR) unit positioning and quality assessment model (UPQUAM)

机译:地理人口分析,以支持美国陆军预备役(USAR)部队的位置和质量评估模型(UPQUAM)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is the second part of a three-part thesis study that was started by LTC Martin Fair in June 2004. In his initial thesis, LTC Fair built a database by joining information from the U.S. Census Bureau, U.S. zip codes, and USAR zip code data. LTC Fair also formulated a network flow model and began an initial implementation of the first of many constraints. My thesis will validate the constraint models and develop the set of constraints that another project, by LTC Brau, will need to develop the network flow model. That model will optimize reserve unit readiness in the third and perhaps final part of the study. Since the early 1990's and the demise of the Cold War, the United States Army active and reserve forces have undergone dramatic restructuring. The Active component was reduced in size from 18 active divisions down to today's total of ten-a force cut of approximately 300,000 soldiers. Additionally, the United States Army Reserve forces mission shifted to a predominately Combat Support (CS) and Combat Service Support (CSS) mission. This realignment was an attempt to use the USAR component in a support role as the world situation dictated. Since the terrorist attacks of September 11, 2001, and the subsequent declaration of a "War on Terrorism," the United States Army Reserve (and active component) has been called upon to deploy more frequently and for extended periods of time. Maintaining unit readiness and a satisfactory "fill-rate" is probably one of the leading challenges that our reserve forces face. This thesis examines the relationship between unit location and recruiting success. We seek to maximize the fill rate of United States Army Reserve (USAR) units. Our method will correlate the vocational aptitudes of the US population with the Military Occupational Specialties (MOS) of the USAR units.
机译:本论文是LTC Martin Fair于2004年6月发起的由三部分组成的论文研究的第二部分。LTCFair在其初始论文中,通过结合美国人口普查局,美国邮政编码和USAR邮政编码的信息建立了一个数据库。代码数据。 LTC Fair还制定了网络流量模型,并开始了许多约束中第一个约束的初始实施。我的论文将验证约束模型,并开发LTC Brau的另一个项目将需要开发网络流模型的约束集。该模型将在研究的第三部分(也可能是最后一部分)中优化储备单位的准备状态。自1990年代初和冷战结束以来,美国陆军现役和预备役部队经历了戏剧性的重组。主动部分的规模从18个主动师减少到今天的总共10兵力削减约300,000士兵。此外,美国陆军预备役部队的任务转移到了主要的作战支援(CS)和作战服务支援(CSS)任务。这次调整是为了根据世界形势的指示使用USAR组件作为支持角色。自2001年9月11日发生恐怖袭击以来,以及随后宣布了“反恐战争”以来,美国陆军预备役(及现役部队)已被要求更频繁地部署并延长部署时间。维持部队的战备状态和令人满意的“填充率”可能是我们预备役部队面临的主要挑战之一。本文研究了单位选址与招聘成功之间的关系。我们力求使美国陆军预备役(USAR)部队的空缺率最大化。我们的方法将把美国人口的职业能力与USAR单位的军事职业专业(MOS)相关联。

著录项

  • 作者

    Tatro Gary S.;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号