首页> 外文OA文献 >Genetic and physiological aspects of barley (Hordeum vulgare L.) responses to waterlogging, salinity and aluminium stresses and their interactions
【2h】

Genetic and physiological aspects of barley (Hordeum vulgare L.) responses to waterlogging, salinity and aluminium stresses and their interactions

机译:大麦对水涝,盐分和铝胁迫及其相互作用的遗传和生理方面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The term “waterlogging” is used to describe stressful conditions of root environment with excessive water, under which the diffusion of gases is reduced by almost four times of magnitude compared with that in the air. Decreased water and nutrient absorption by roots occurs with either complete (anoxia) or partial (hypoxia) depletion of oxygen. Waterlogging events may be a result of prolonged rain, flooding caused by melting snow, or poor soil drainage. The yield loss caused by waterlogging varies with duration of the stress, soil types and the tolerance of different species.udThe waterlogging stress could occur simultaneously with other soil stresses such as salinity which is another major abiotic stress that limits crop production via adverse effects of osmotic stress, specific ion toxicity, and stress-related nutritional disorders. Detrimental effects of salinity are often exacerbated by low oxygen availability when plants are grown under waterlogged conditions. In our study, we investigated the interaction between waterlogging and salinity stresses. A doubled haploid (DH) population consisting of 175 lines derived from a cross between a Chinese barley (Hordeum vulgare L.) variety Yangsimai 1 (YSM1) and an Australian malting barley variety Gairdner was used to construct a high density molecular map which contained more than 8,000 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphism (SNP) markers. Salinity tolerance of parental and DH lines was evaluated under drained (SalinityD) and waterlogged (SalinityW) conditions at two different sowing times. Three quantitative trait loci (QTL) located on chromosome 1H, single QTL located on chromosome 1H, 2H, 4H, 5H and 7H, were identified to be responsible for salinity tolerance under different environments. Waterlogging stress, day length and temperature showed significant effects on barley salinity tolerance. The QTL for salinity tolerance mapped on chromosomes 4H (QSlwd.YG.4H) and 7H (QSlwd.YG.7H and QSlww.YG.7H) were only identified in winter trials, while the QTL on chromosome 2H (QSlsd.YG.2H and QSlsw.YG.2H) were only detected in summer trials. Genes associated with flowering time were found to pose significant effects on the salinity QTL mapped on chromosomes 2H and 5H in summer trials. Given the fact that two QTL for salinity tolerance on 1H, QSlsd.YG.1H and QSlww.YG.1H-1, reported here have never been considered in the literature, this warrants further investigation and evaluation for suitability to be used in breeding programs.udAluminium (Al) is prevalent in soils, but Al toxicity is manifested only in acid conditions. It causes severe damages to the root system. Short-term waterlogging stress can occur simultaneously with Al toxicity in areas with high rainfall or inappropriate irrigation pattern. In this work, we investigated effects of short-term treatments with hypoxia and phenolic acid (two major constraints in waterlogged soils) on roots’ sensitivity to low-pH and Al stresses. We showed that hypoxia-primed roots maintained higher cell viability when exposed to low-pH/Al stress, in both elongation and mature root zones, and superior ability to retain K+ in response to low-pH/Al stresses. These priming effects were not related to higher H+-ATPase activity and better membrane potential maintenance, and could not be explained by the increased expression levels of HvHAK1, which mediates high-affinity K+ uptake in roots. Instead, hypoxia-conditioned roots were significantly less sensitive to H2O2 treatment, indicated by a 10-fold reduction in the magnitude of K+ efflux changes. This suggested that roots pre-treated with hypoxia desensitised ROS (reactive oxygen species)-inducible K+ efflux channels in root epidermis and had enhanced anti-oxidative capacity. A possible role of Ca2+ in stress-induced ROS signalling pathways is also discussed. We report, for the first time, the phenomenon of cross-protection between hypoxia and low-pH/Al stresses, and causally link it to cell’s ability to maintain cytosolic K+ homeostasis.udBarley is one of the most Al-sensitive small-grained cereals. The major gene for Al tolerance in barley is HvAACT1 (HvMATE) on chromosome 4H which encodes a multidrug and toxic compound extrusion (MATE) protein. The HvAACT1 protein facilitates the Al-activated release of citrate from root apices which protects the growing cells and enables root elongation to continue. A 1-kb transposable element-like insertion in the 5’-untranslated region (UTR) of HvAACT1 is associated with increased gene expression and Al tolerance and a PCR-based marker is available to score for this insertion. We screened a wide range of barley genotypes for Al tolerance and identified a moderately tolerant Chinese genotype named CXHKSL which did not show the typical allele in the 5’-UTR of HvAACT1 that is associated with tolerance. We investigated the mechanism of Al tolerance in CXHKSL and concluded that it also relies on the Al-activated release of citrate from roots. Quantitative trait loci (QTL) analysis of doubled haploid lines generated with CXHKSL and the Al-sensitive variety Gairdner mapped the tolerance locus to the same region as HvAACT1 on chromosome 4H. We found that the Chinese barley genotype CXHKSL possesses a novel allele of the major Al tolerance gene HvAACT1.udIn conclusion, a novel allele of the major Al tolerance gene HvAACT1 was identified from a Chinese variety. The allele also relies on the Al-activated release of citrate from roots. In addition, significant interactions between various stresses exist. Waterlogging stress increased the severity of salinity stress, while short-term waterlogging stress elevated barley tolerance to Al toxicity through ROS and Ca2+ signallings. Environmental conditions, for example, day length and temperature could pose significant effects on salinity tolerance. Therefore, both of those external (growth temperature, day length and soil water level) and internal factors (plant flowering time, cytosol ROS production, cytosol Ca2+ levels and allelic variation of tolerance genes) should be given significant emphasis when evaluating barley tolerance to either a specific abiotic stress or combined stresses.
机译:术语“涝渍”用来描述根系环境的胁迫条件,即水分过多,与空气中的扩散相比,气体的扩散减少了近四倍。根部水分和养分吸收的减少是由于完全(缺氧)或部分(缺氧)耗氧而发生的。内涝事件可能是长时间降雨,融雪引起的洪水或土壤排水不良的结果。淹水造成的产量损失随胁迫持续时间,土壤类型和不同物种的耐受性而变化。 ud淹水胁迫可能与其他土壤胁迫(例如盐度)同时发生,盐分是另一种主要的非生物胁迫,通过胁迫的不利影响限制了作物的生产。渗透压力,特定的离子毒性和与压力有关的营养失调。当植物在淹水条件下生长时,氧气利用率低通常会加剧盐分的有害影响。在我们的研究中,我们调查了涝渍和盐分胁迫之间的相互作用。使用由中国大麦(Hordeum vulgare L.)品种Yangsimai 1(YSM1)和澳大利亚麦芽大麦品种Gairdner杂交得到的175个品系组成的双倍单倍体(DH)群体,构建了包含更多内容的高密度分子图。超过8,000个多样性阵列技术(DArT)标记和单核苷酸多态性(SNP)标记。在排水(SalinityD)和浸水(SalinityW)条件下,在两个不同的播种时间评估亲本和DH系的耐盐性。确定了位于1H染色体上的三个定量性状基因座(QTL),位于1H,2H,4H,5H和7H染色体上的单个QTL负责不同环境下的盐度耐受性。淹水胁迫,日长和温度对大麦耐盐性表现出显着影响。仅在冬季试验中鉴定了映射到4H(QSlwd.YG.4H)和7H(QSlwd.YG.7H和QSlww.YG.7H)染色体上的耐盐性QTL,而在2H染色体上(QSlsd.YG.2H)的耐盐性QTL仅在冬季试验中确定。和QSlsw.YG.2H)仅在夏季试验中检测到。在夏季试验中,发现与开花时间相关的基因对定位在2H和5H染色体上的盐度QTL有显着影响。考虑到这里没有报道过两个关于1H盐度耐受性的QTL QSlsd.YG.1H和QSlww.YG.1H-1,因此有必要进一步研究和评估其在育种程序中的适用性铝(Al)在土壤中普遍存在,但仅在酸性条件下才显示Al毒性。它会对根系统造成严重损害。在降雨多或灌溉方式不适当的地区,短期内涝胁迫可能与铝毒同时发生。在这项工作中,我们调查了短期缺氧和酚酸处理(淹水土壤中的两个主要限制因素)对根部对低pH和Al胁迫敏感性的影响。我们显示,低氧引发的根系在伸长和成熟根部区域中暴露于低pH / Al胁迫时保持较高的细胞活力,并且在响应低pH / Al胁迫时具有较高的保留K +的能力。这些启动作用与更高的H + -ATPase活性和更好的膜电位维持能力无关,也不能通过介导根部高亲和力K +吸收的HvHAK1的表达水平增加来解释。取而代之的是,缺氧条件下的根对H2O2处理的敏感性显着降低,这表明K +外排变化幅度降低了10倍。这表明用缺氧预处理的根使表皮中的ROS(活性氧)诱导的K +外排通道脱敏,并具有增强的抗氧化能力。还讨论了Ca2 +在应激诱导的ROS信号通路中的可能作用。我们首次报道了低氧和低pH / Al胁迫之间的交叉保护现象,并因此将其与细胞维持胞质K +稳态的能力联系起来。 ud大麦是对铝最敏感的小粒谷物之一。大麦对铝的耐受性的主要基因是4H染色体上的HvAACT1(HvMATE),该基因编码多药和有毒化合物挤出(MATE)蛋白。 HvAACT1蛋白促进了Al激活的柠檬酸从根尖的释放,从而保护了正在生长的细胞,并使根的延伸得以持续。 HvAACT1的5'-非翻译区(UTR)中存在1kb的易位元件样插入与基因表达和Al耐受性增加相关,并且基于PCR的标记可用于对该插入进行评分。我们筛选了大麦基因型对铝的耐受性,并鉴定了一个中等耐受性的中国基因型,名为CXHKSL,该基因型在HvAACT1的5'-UTR中未显示与耐受性相关的典型等位基因。我们研究了CXHKSL中铝耐受性的机制,并得出结论,它也依赖于铝激活柠檬酸根的释放。用CXHKSL和Al敏感品种Gairdner生成的双倍单倍体系的数量性状基因座(QTL)分析将耐受位点映射到4H染色体上与HvAACT1相同的区域。我们发现中国大麦基因型CXHKSL具有一个主要的Al耐性基因HvAACT1的新等位基因。 ud最后,从一个中国品种中鉴定出一个主要的Al耐性基因HvAACT1的新等位基因。等位基因还依赖于柠檬酸根自铝激活的释放。另外,各种应力之间存在显着的相互作用。淹水胁迫增加了盐分胁迫的严重性,而短期浸水胁迫则提高了大麦对通过ROS和Ca2 +信号传导的铝毒性的耐受性。环境条件(例如日长和温度)可能会对耐盐性产生重大影响。因此,在评估大麦对以下两种植物的耐性时,无论是外部因素(生长温度,日长和土壤水位)还是内部因素(植物开花时间,细胞溶质ROS产生,细胞溶质Ca2 +水平和耐性基因的等位基因变异)都应被重点强调。特定的非生物胁迫或综合胁迫。

著录项

  • 作者

    Ma Y;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号