首页> 外文OA文献 >Modelling water and solute transport in Chara: a numerical study of the effects of unstirred layers on membrane parameter estimation
【2h】

Modelling water and solute transport in Chara: a numerical study of the effects of unstirred layers on membrane parameter estimation

机译:模拟Chara中的水和溶质运移:非搅拌层对膜参数估计影响的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cell pressure probe (CPP) is an apparatus used to measure membrane parametersudof cells, namely the hydraulic conductivity which indicates the permeability of theudmembrane to water, the permeability coefficient which indicates the permeability ofudthe membrane to solutes, and the reflection coefficient which indicates the extent toudwhich water and solute transport across the membrane is coupled. This thesis is audnumerical exploration of the impact of unstirred layers on the measurement of theseudparameters. Unstirred layers alter the effective concentration across the membrane,udand hence influence the calculation of the membrane parameters which are usuallyudobtained using the concentration value in the external bulk solution and assume audhomogeneous internal cell solution.udIn CPP experiments, cell pressure dynamics are changed by imposing either: a) audhydrostatic perturbation, where cell sap is injected into or removed from the cell, or b)udan osmotic perturbation, where permeable solutes are added to or removed from theudexternal solution. Outputs are pressure-time curves which are termed relaxationudcurves.udMuch of the CPP data has been obtained for Chara, a large-celled algae. The modeluddeveloped here will be applied to two sets of Chara data: one previously published,udand one unpublished and obtained from collaborators who freely contributed theiruddata to this study. Data from two types of CPP experiments were used to estimateudmembrane parameters by fitting both the classical and unstirred layer (UL) models.udThese were: hydrostatic pressure pulse experiments, and osmotic pressure pulseudexperiments using permeable solutes.udThis thesis comprises five chapters. Chapter 1 provides an introduction to the researchudarea, and gives an overview of the cell system, CPP experiments, and membraneudtransport theory. In Chapter 2 an analysis of predictions and limitations using theudclassical (i.e. usual) method of parameter estimation is made by applying it toudpublished data. This classical model makes simple assumptions about the system,ududallows analytical solutions to the membrane transport equations, and does not includeudunstirred layers. In Chapter 3, a model based upon the classical model butudincorporating unstirred layers, is outlined and its behaviour and predictions examined.udIn Chapter 4, the unstirred layer model is applied to unpublished CPP data, itsudpredictions compared with those from the classical model, and the overall predictionsudand behaviour of the unstirred layer model evaluated. Finally, in Chapter 5 anudassessment of usual practices and assumptions made in the parameter estimationudprocess using the CPP is carried out, and recommendations for future research areudgiven.udThe UL model was found to reproduce the observed CPP data to a high degree ofudaccuracy, and reproduced subtle details in the observed data better than the classicaludmodel. Estimated parameters from the two models differed significantly; the relativeuddifference in the parameters with respect to the UL model was up to 50% for osmoticudexperiments and 5% for hydrostatic experiments. This shows that unstirred layersudhave a significant impact on estimated parameters, and that the membrane parametersudcommonly estimated using the classical model may be in error by up to 50%.udData from three Chara cells were fit in Chapter 4. Significant inter-cell variation inudestimated parameters was found. Estimated parameters for experiments carried outudwithin the same cell were quite consistent, indicating that the UL model is predictingudthe membrane parameters well since parameters are expected to characterise a celludand its membrane. The behaviour of the UL model was also consistent withudexpectations from the Kedem and Katchalsky theory for membrane transport,udsuggesting that the UL model affects the estimated membrane parameters but not theudoverall behaviour predicted by the membrane transport equations.udCell pressure dynamics were found to be very sensitive to the thickness of theudunstirred layers in the system, so that estimated membrane parameters are dependentudon knowledge of the UL thicknesses. In Chapter 4, the UL model was used toudestimate the external UL thickness together with the membrane parameters, while theudinternal UL thickness was fixed at a value effectively equivalent to assuming theudwhole cell interior is a UL. The model estimated the external UL thickness to be inudthe range of 30-50 μm for fits to the unpublished data. Some variation in estimatedududparameters between types of CPP experiments (e.g. hydrostatic or osmoticudexperiments; experiments with positive or negative pressure perturbations) wereudfound, but the sample size was not sufficiently large for definite conclusions to beudmade. The UL model did not predict polarity in the membrane parameters (i.e.uddifferences in parameters between positive and negative pressure perturbations). Thisudsuggests that evidence of polarity found in the parameters is likely due to effects of audcomposite membrane (e.g. presence of a tonoplast) or of dehydration of theudmembrane, and not due to the presence of ULs.udData were also available from osmotic experiments where bubbles were used toudseparate the new and old external solutions during the solution changeover. Fits toudexperiments where bubbles are present were found to be more straightforward and toudgive more accurate estimates of membrane parameters, as the time for solutionudexchange was significantly shortened. Where bubbles were not present, the time forudsolution exchange could not be as effectively incorporated into the model due to lackudof experimental data regarding the duration and shape of the solution changeover.udResults clearly showed that some common assumptions regarding the effects of ULsudon CPP experiments are incorrect. External ULs are often assumed to primarilyudinfluence only the first few seconds of the relaxation curve, but the UL model showsudthat internal and external ULs influence the cell dynamics throughout the entireudcourse of a CPP experiment. Furthermore, the extent of the influence on ULs on CPPuddata can only be quantified numerically. Previous attempts at using solutions toudsteady-state diffusion equations, or using steady-state equations relating permeabilityudacross the membrane to permeability in the ULs to predict the impact of ULs onudestimated membrane parameters, are shown to be inaccurate. Published estimates ofudmembrane parameters for Chara are deemed to be in error, because even whereudeffects of ULs have been claimed to be taken into account, this has not been doneudnumerically. In addition, it is shown that relaxation curves can be fit using theudclassical model (which does not incorporate ULs) despite the presence of unstirredudlayers, because ULs do not change the fundamental shape of the relaxation curves,udand therefore the true effects of ULs are hidden.ududIt is recommended that the classical model no longer be used for parameterudestimation, and a more realistic model incorporating ULs be applied. This will lead touda more accurate estimation of membrane parameters. The model developed in thisudthesis, by taking into account effects of unstirred layers, can help to resolve the extentudto which ULs impact on estimated membrane parameters, and also the extent to whichudULs influence parameter variation among different types of experiments orudexperimental conditions. Currently, further experimental data is necessary for a widerudapplication of the UL model and fuller assessment of its predictions. The UL modeludmay also be extended in the future for application to more complicated systems suchudas root tissues.
机译:电池压力探针(CPP)是一种用于测量细胞膜参数uduf的设备,即表示水膜对水的渗透性的水力传导率,指示膜对溶质的渗透性的渗透系数和反射系数,表示水和溶质在膜上的传输耦合程度。本文是对非搅拌层对这些非参数测量的影响的数值研究。未搅拌的层会改变整个膜的有效浓度,从而影响膜参数的计算,通常使用外部整体溶液中的浓度值并假定内部细胞溶液不均匀来获得膜参数。在CPP实验中,细胞压力可以通过以下方式改变动力学:a)流体静液扰动,将细胞液注入细胞或从细胞中去除;或b)乌丹渗透扰动,将渗透性溶质添加至外部溶液中或从中去除。输出为压力-时间曲线,称为松弛曲线。 ud对于大孔藻类Chara,已经获得了许多CPP数据。此处开发的模型将应用于两组Chara数据:一组先前发布的 ud,另一组未发布并从合作者那里免费获得,合作者将自己的 uddata贡献给这项研究。通过拟合经典和非搅拌层(UL)模型,使用来自两种类型的CPP实验的数据估算 udmbrane参数。 ud这些是:静水压力脉冲实验和使用渗透性溶质的渗透压脉冲 udexperiment。 ud五章。第1章对研究进行了介绍,并概述了细胞系统,CPP实验和膜过运输理论。在第2章中,使用 udclassical(即常用)参数估计方法对预测和限制进行了分析,方法是将其应用于 ud发布的数据。该经典模型对系统进行了简单假设, ud udallows了膜传输方程的解析解,并且不包括 udunstirred层。在第3章中,概述了基于经典模型但结合了未搅拌层的模型,并研究了其行为和预测。 ud在第4章中,未搅拌层模型应用于未发布的CPP数据,与来自CPP数据的预测相比经典模型,并评估了非搅拌层模型的整体预测 udand行为。最后,在第5章中,对使用CPP进行参数估计 ud过程中的常规做法和假设进行了 u评估,并为以后的研究提供了建议 ud。发现了UL模型可以将观察到的CPP数据重现为高度的准确性,并且比经典 udmodel更好地重现了观察到的数据中的细微细节。两种模型的估计参数差异很大。相对于UL模型,参数的相对差异在渗透实验中高达50%,在流体静力学实验中高达5%。这表明未搅拌的层对估计的参数有显着影响,使用经典模型通常估计的膜参数可能有高达50%的误差。 ud来自三​​个Chara单元的数据在第4章中进行了拟合。发现去估计的参数中的细胞变化。在同一细胞内进行的实验的估计参数非常一致,这表明由于预期参数可以表征细胞及其膜,因此UL模型可以很好地预测膜参数。 UL模型的行为也与Kedem和Katchalsky理论对膜运输的期望一致,建议UL模型会影响估计的膜参数,但不会影响由膜运输方程式预测的总体行为。 ud细胞压力动态发现膜对系统中未搅拌层的厚度非常敏感,因此估算的膜参数取决于UL厚度的知识。在第4章中,使用UL模型估算薄膜的外部UL厚度以及膜参数,而将 UL外部UL厚度固定为有效值,该值等效于假设整个电池内部为UL。该模型估计外部UL厚度在30至50μm的范围内,以适合未公开的数据。在CPP实验类型之间的估算 ud ud参数的某些变化(例如静水压或渗透 ud实验;带有正压或负压扰动的实验),但是样本数量不足以得出明确的结论。 UL模型无法预测膜参数的极性(即正负压力扰动之间的参数差异)。这表明在参数中发现的极性证据很可能是由于复合膜(例如,液泡膜的存在)的影响或膜的脱水,而不是由于UL的存在。 udData也可用来自渗透实验,其中在溶液转换过程中使用气泡分离新旧溶液。发现存在气泡的实验更加简单,并且膜参数的估计更为准确,因为溶液的溶液交换时间大大缩短了。在不存在气泡的情况下,由于缺乏关于溶液转换的持续时间和形状的实验数据,因此无法将溶液交换的时间有效地整合到模型中。结果清楚地表明,关于溶液影响的一些常见假设ULs udon CPP实验不正确。通常假定外部UL仅影响松弛曲线的前几秒,但是UL模型显示内部和外部UL会影响整个CPP实验过程中的细胞动力学。此外,对UL对CPP uddata的影响程度只能通过数字量化。先前尝试使用对非稳态扩散方程的解,或使用将渗透率跨膜与UL中的渗透率相关的稳态方程来预测UL对估算的膜参数的影响的尝试是不准确的。 Chara的 udmembrane参数的已发布估计被认为是错误的,因为即使在声称已考虑到UL的影响的情况下,也没有做到数字方式。此外,它表明尽管存在未搅拌的 udlayer,但可以使用 udclassical模型(不包含UL)拟合松弛曲线,因为UL不会更改松弛曲线的基本形状,因此, ud ud建议不要将经典模型用于参数推论,而应采用更实际的模型并结合UL。这将导致更准确地估计膜参数。本研究中开发的模型通过考虑未搅拌层的影响,可以帮助解决UL对估计的膜参数的影响程度,以及UL对不同类型的实验或实验之间参数变化的影响程度。 ud实验条件。当前,更多的实验数据对于UL模型的更广泛应用和对其预测的更全面评估是必需的。 UL模型 ud将来可能还会扩展,以应用于更复杂的系统,例如 udas根组织。

著录项

  • 作者

    Koh S;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号