首页> 外文OA文献 >Investigations into Playing Chess Endgames using Reinforcement Learning.
【2h】

Investigations into Playing Chess Endgames using Reinforcement Learning.

机译:使用强化学习进行国际象棋残局的调查。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research in computer game playing has relied primarily on brute force searching approaches rather than any formal AI method. However, these methods may not be able to exceed human ability, as they need human expert knowledge to perform as well as they do. One recently popularized field of research known as reinforcement learning has shown good prospects in overcoming these limitations when applied to non-deterministic games. udThis thesis investigated whether the TD(_) algorithm, one method of reinforcement learning, using standard back-propagation neural networks for function generalization, could successfully learn a deterministic game such as chess. The aim is to determine if an agent using no external knowledge can learn to defeat a random player consistently.udThe results of this thesis suggests that, even though the agents faced a highly information sparse environment, an agent using a well selected view of the state information was still able to learn to not only to differentiate between various terminating board positions but also to improve its play against a random player. This shows that the reinforcement learning techniques are quite capable of learning behaviour in large deterministic environments without needing any external knowledge.
机译:对计算机游戏的研究主要依赖于蛮力搜索方法,而不是任何形式的AI方法。但是,这些方法可能无法超越人类的能力,因为它们需要人类专家知识来像他们一样执行。当被应用到非确定性游戏中时,一个最近广为流行的研究领域称为强化学习,在克服这些局限性方面显示了良好的前景。 ud本文研究了使用标准反向传播神经网络进行功能概括的强化学习方法TD(_)算法能否成功学习象棋这样的确定性游戏。目的是确定不使用外部知识的特工是否可以始终如一地击败随机玩家。 ud本论文的结果表明,即使特工面对高度信息稀疏的环境,特工仍会使用精心选择的视角。状态信息不仅能够学会区分不同的终局位置,而且还能提高其对抗随机玩家的能力。这表明强化学习技术完全有能力在较大的确定性环境中学习行为,而无需任何外部知识。

著录项

  • 作者

    Dazeley R;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号