首页> 外文OA文献 >Control of power electronic interfaces for photovoltaic power systems for maximum power extraction
【2h】

Control of power electronic interfaces for photovoltaic power systems for maximum power extraction

机译:控制光伏发电系统的功率电子接口以获取最大功率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As photovoltaic power plants provide an ever-increasing share of the world’s electricity and assist in the mitigation of environmental degradation, engineers need to consider new challenges associated with the integration of this variable and intermittent source of energy into the grid. The associated challenges can only be solved by deploying appropriate technologies. This thesis proposes some technological solutions by developing control algorithms for power electronic interfaces involved in photovoltaic (PV) energy conversion. The overall objective is to develop control algorithms and the associated power converter topologies so as to efficiently harvest solar energy with minimal losses and at minimal cost, while providing the much-needed system reliability. The thesis details the analyses and modelling of photovoltaic subsystems, their simulation studies, the control approaches adopted, and the application of maximum power point tracking technique to extract maximum power from the photovoltaic system.udThis thesis starts out with the development of a workable PV simulation model that considers the effects of environmental variables on system’s performance for deeper understanding of PV characteristics and for accurate prediction of the PV system’s behaviour in deployment. Also, introduced in the same chapter is a novel optimisation tool for the design of standalone PV power plants. To convert the “raw energy” from sunlight into usable regulated dc energy, the thesis proposes using a SEPIC (single ended primary inductance converter) dc-dc converter for the interfacing function. An in depth analysis and design of an 800W-capacity SEPIC converter is introduced and deployed for both simulation and experimental studies. Also developed for the SEPIC converter is a robust control system that is able to regulate the dc link voltage to the desired value, irrespective of changes in input voltage or system loading.udThe thesis, also, proposes an improved maximum power point tracking (MPPT) algorithm derived from the incremental conductance MPPT technique. This ensures the efficient operation of the PV power plant by rapidly and accurately tracking the maximum power point (MPP) of the PV array regardless of changes in environmental conditions. In addition, in chapter 5, to ensure the reliability and availability of the PV power plant, the thesis proposes a control system for the bidirectional dc-dc converter that interfaces the energy storage system. The control system offers the desired management of the energy storage system by ensuring proper charging and discharging, protection, and power balance between the PV subsystems. A 500W capacity of the converter is analysed, designed and later constructed in the laboratory.udTo convert the generated dc energy into useful ac power, the thesis develops models and control strategies for the dc-ac converter (inverter) to ensure that sinusoidal waveform of the desired voltage magnitude and frequency is generated. Control strategies for three-phase operation in standalone and grid connected modes are also introduced.udThe developed control algorithms and designed converters are subjected to rigorous simulation studies using MATLAB/Simulink/SimPowerSystems software. Such simulation studies provide useful insight into the PV system’s behaviour when deployed in operation. However, simulation results without experimental backup offers limited practical value. Consequently, the thesis presents the hardware implementation of the entire PV power plant. It discusses the building of the power converter prototypes, the printed circuit boards (PCBs) for data acquisition, conditioning, isolation and gate-driving. The real time control of the plant using a digital signal processor platform is discussed in detail and the experimental results presented for the validation of the simulation results.udThe main contributions of this thesis include: 1) the development of a workable photovoltaic power system simulation model for characterisation studies; 2) development of a software tool for the design of standalone PV plants; 3) development of an improved algorithm for maximum power point tracking; 4) development of an improved current mode based algorithm for control of the energy storage interface converter; 5) development of models for standalone and grid connected PV systems with the associated controls; and 6) experimental implementation of an effective, versatile, low-cost, low-component-count, data acquisition and conditioning system for a PV systems using dSPACE DS1104 DSP system.
机译:随着光伏电站在全球电力中所占份额不断增加,并有助于缓解环境恶化,工程师需要考虑将这种可变的间歇性能源并入电网所带来的新挑战。只有通过部署适当的技术才能解决相关的挑战。通过开发涉及光伏(PV)能量转换的电力电子接口控制算法,本文提出了一些技术解决方案。总体目标是开发控制算法和相关的功率转换器拓扑结构,以便以最小的损失和最小的成本有效地收集太阳能,同时提供急需的系统可靠性。本文详细介绍了光伏子系统的分析和建模,它们的仿真研究,所采用的控制方法以及最大功率点跟踪技术在光伏系统中提取最大功率的应用。 ud模拟模型,该模型考虑了环境变量对系统性能的影响,以便更深入地了解PV特性并准确预测部署中PV系统的行为。同样,在同一章中介绍的是用于独立光伏电站设计的新颖优化工具。为了将太阳光中的“原始能量”转换为可用的调节后的直流能量,本文提出使用SEPIC(单端初级电感转换器)dc-dc转换器来实现接口功能。介绍并部署了800W容量SEPIC转换器的深入分析和设计,并用于仿真和实验研究。 SEPIC转换器还开发了一种鲁棒的控制系统,该系统能够将直流链路电压调节到所需值,而不管输入电压或系统负载如何变化。 ud本文还提出了一种改进的最大功率点跟踪(MPPT) )算法源自增量电导MPPT技术。通过快速准确地跟踪光伏阵列的最大功率点(MPP),无论环境条件如何变化,这均可确保光伏电站的高效运行。此外,在第5章中,为确保光伏电站的可靠性和可用性,本文提出了一种与储能系统接口的双向DC-DC转换器控制系统。该控制系统通过确保PV子系统之间的正确充电和放电,保护和功率平衡,来提供所需的储能系统管理。分析,设计并在实验室中构造了500W的转换器。 ud为了将产生的直流能量转换为有用的交流功率,本文开发了用于直流-交流转换器(逆变器)的模型和控制策略,以确保正弦波形产生期望的电压幅度和频率。还介绍了独立和并网模式下三相操作的控制策略。 ud使用MATLAB / Simulink / SimPowerSystems软件对开发的控制算法和设计的变频器进行了严格的仿真研究。这样的模拟研究可为深入了解光伏系统在运行中的行为提供有用的见解。但是,没有实验备份的模拟结果提供的实用价值有限。因此,本文提出了整个光伏电站的硬件实现。它讨论了功率转换器原型的构建,用于数据采集,调节,隔离和栅极驱动的印刷电路板(PCB)。详细讨论了使用数字信号处理器平台对电厂进行的实时控制,并提供了实验结果以验证仿真结果。 ud本文的主要贡献包括:1)开发可运行的光伏发电系统仿真表征研究模型; 2)开发用于设计独立光伏电站的软件工具; 3)开发用于最大功率点跟踪的改进算法; 4)开发用于控制能量存储接口转换器的改进的基于电流模式的算法; 5)开发用于独立和并网光伏系统以及相关控件的模型;和6)使用dSPACE DS1104 DSP系统的光伏系统的有效,通用,低成本,低组件数,数据采集和调节系统的实验实现。

著录项

  • 作者

    Muoka P;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号