首页> 外文OA文献 >A Simulated annealing global maximum power point tracking method for photovoltaic systems experiencing non-uniform environmental conditions
【2h】

A Simulated annealing global maximum power point tracking method for photovoltaic systems experiencing non-uniform environmental conditions

机译:经历不均匀环境条件的光伏系统的模拟退火全局最大功率点跟踪方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photovoltaic (PV) systems have immense potential due to the abundance ofudavailable solar energy and the capability of these systems to be implemented inuda distributed manner. This clean, renewable and sustainable energy source canudprovide a solution to concerns about the shortage of fossil fuels, global warming,udgreenhouse gas emissions and pollution in general. Residential PV systemsudenable consumers to take control of generating electricity to satisfy their ownudload requirements and potentially export any excess energy to the distributionudgrid. Investing in a PV system requires significant initial capital and PV cellsudhave a very limited efficiency. Residential customers who invest in a PV systemudexpect to be able to have the best return on their investment by utilising theudpower available in the sunlight to the greatest extent possible. The potentialudpower available from such systems can be dramatically reduced due to shadingudof the modules and ineffective control strategies to overcome the influence ofudshading. PV cells exhibit a non-linear Power-Voltage (P-V) characteristic leadingudto a unique point corresponding to optimal operation. This point is referred to asudthe Maximum Power Point (MPP), and varies depending on the environmentaludconditions. Typical conditions in a residential environment involve obstaclesudsuch as trees, houses and power poles which may cause shading across all orudpart of the PV system throughout the day. Shading from these obstacles leadsudto increased non-linearity in the P-V characteristic as multiple maxima can beudexhibited. Traditionally, Maximum Power Point Tracking (MPPT) techniquesudhave been developed to track a single maximum on the P-V characteristicudbased on simple techniques such as hill climbing. These techniques inherentlyudfail when multiple maxima are exhibited under Partial Shading Conditions (PSC).udThe work documented in this thesis consists of two main parts. In the first part,uda study of modelling PV cells and an extensive shading study for an eight-moduleudPV system is conducted. This analysis has led to the classification of partialudshading phenomena based on the time scale as either constant, static or transientudpartial shading, and exploring the effect that each aspect of partial shadingudhas on the relative location of the Global Maximum Power Point (GMPP).udThe second part comprehensively explores the concept of MPPT and presentsuda review of techniques proposed in the literature with consideration of theirudperformance under non-uniform environmental conditions. A Global MPPTud(GMPPT) method is proposed based on the global optimisation technique ofudSimulated Annealing (SA) and its performance is verified through simulationsudand experimental application.udThe key contributions of this thesis include proposing a shading classificationudbased on the time of influence of the shading and studying how this affects theudrelative location of the GMPP, development and optimisation of a SA basedudGMPPT method, and the merging of these results to develop a comprehensiveudand enhanced GMPPT strategy.udThe main concerns associated with modelling PV cells and modules are introducedudand a model of the BP380 PV module is developed based on theudcommonly used Single Diode Model (SDM) for PV modules. The SDM providesuda good balance between accuracy and simplicity and is shown to model theudexperimentally measured P-V and Current-Voltage (I-V) characteristics of theudBP380 modules with acceptable accuracy. A model is also developed andudexperimentally validated based on combining two series-connected modulesudmodelled using the SDM to explore PSC.udA PV system comprised of eight series-connected PV modules, modelled basedudon the BP380 PV modules, is developed to explore the influence of PSC. Audmethodology for calculating the position of the shadow tip and determiningudwhich cells are shaded by an object is proposed and used to perform five caseudstudies exploring the effects of constant, static and transient partial shading.udConstant partial shading is defined as a mismatch in the potential of the modulesudin a system based on factors such as manufacturing tolerance, cell degradationudand damage over time. This type of shading should remain roughly the sameudfor all time. Static partial shading is considered as shading that moves muchudslower than the movement of clouds across the sky and represents the shadingudthat occurs on the modules due to the presence of obstacles in the environment.udFinally, transient shading is the quickest shading phenomena and is representedudby the changing irradiance due to the movement of clouds across the sky.udAn extensive review of maximum power extraction strategies is presented. Eachudtechnique is assessed against key criteria identified as being essential for auduniversally applicable GMPPT strategy. In particular, the methods are assessedudon whether they can locate a global maximum reliably, the method complexityudand its ease of application to other PV systems. The analysis suggests thatuda global maximum power extraction strategy with moderate complexity andudlimited dependence on system specific parameters is needed.udThe proposed SA based GMPPT method is introduced in the form of simpleudstudies showing the effectiveness of the method in converging to a GMPP basedudon a two module PV system, eight module PV system, basic grid connectedudsystem and through experimental verification on the two series-connected BP380udPV modules. The key parameters of the SA method are explored in more detailudto assess their influence on the effectiveness of the proposed method.udThe main advantages of the proposed methodology for GMPPT is that it is notudsignificantly more complex than the common perturb and observe (P&O) MPPTudtechnique, yet has far superior performance in converging to the GMPP. Additionally,udwhen compared to the Particle Swarm Optimisation (PSO) methodudwhich is commonly used for GMPPT, the SA based method has less complexityudyet similar performance in converging to the GMPP. By incorporating understandingudof the relative location of the GMPP under different PSC, the techniqueudis enhanced to improve accuracy and convergence time. In residential environmentsudone of the key factors is minimising cost and ensuring maximum effciency.udFor this reason, a low cost and low complexity MPPT method that can achieveudGMPP identification is essential, to enable systems implemented in residentialudenvironments to be utilised to the greatest extent possible.
机译:光伏(PV)系统具有巨大的潜力,这是因为其拥有丰富的,以及“分布式”的系统。这种清洁,可再生,可持续的能源可以为解决对化石燃料短缺,全球变暖,温室气体排放和总体污染的担忧提供解决方案。住宅光伏系统可消耗的用户可以控制发电,以满足自己的负荷要求,并有可能将任何多余的能源输出到配电电网。投资光伏系统需要大量的初始资金,光伏电池的效率非常有限。投资光伏系统的住宅客户可以最大程度地利用阳光下的 udpower,从而获得最佳的投资回报。由于模块的阴影 udud和无效的控制策略来克服 udshading的影响,可以大大降低此类系统提供的潜在 udpower。 PV电池具有非线性功率电压(P-V)特性,导致达到与最佳操作相对应的唯一点。该点称为最大功率点(MPP),并根据环境条件而变化。住宅环境中的典型条件包括障碍物,例如树木,房屋和电线杆,这些障碍物可能会在一整天内在整个或整个光伏系统中造成阴影。这些障碍物的阴影导致 -P-V特性中的非线性增加,因为可以禁止多个最大值。传统上,已经开发了最大功率点跟踪(MPPT)技术来基于简单的技术(例如爬坡)来跟踪P-V特性上的单个最大值。当在局部阴影条件(PSC)下表现出多个极大值时,这些技术固有地 udfail。 ud本论文中介绍的工作包括两个主要部分。在第一部分中,对光伏电池建模进行了研究,并对八模块的udPV系统进行了广泛的遮光研究。该分析导致根据时间尺度将局部非阴影现象分类为恒定,静态或瞬时非局部阴影,并探讨了局部阴影各个方面对全局最大功率点相对位置的影响第二部分全面探讨了MPPT的概念,并考虑了在非均匀环境条件下的性能,对文献中提出的技术进行了综述。基于 ud模拟退火(SA)的全局优化技术,提出了一种全局MPPT ud(GMPPT)方法,并通过仿真 udand实验应用验证了其性能。 ud本文的主要贡献包括提出了基于阴影的分类 ud研究阴影的影响时间并研究其如何影响GMPP的相对位置,基于SA的 udGMPPT方法的开发和优化,以及将这些结果合并以开发综合的 udand增强型GMPPT策略。介绍了与建模光伏电池和组件相关的主要问题,并基于常用的光伏组件单二极管模型(SDM)开发了BP380光伏组件的模型。 SDM在精度和简便性之间提供了一个很好的平衡,并且显示出可以对udBP380模块的实验测量的P-V和电流电压(I-V)特性进行建模,并且具有可接受的精度。通过结合两个串联模块并使用SDM进行建模以探索PSC,还开发了模型并进行了实验验证。 ud开发了由八个串联光伏模块组成的光伏系统,该系统基于BP380 PV模块进行了建模探索PSC的影响。提出了一种阴影方法,用于计算阴影尖端的位置并确定对象对哪些单元进行阴影处理,并用于执行五种案例研究,以研究恒定,静态和瞬态局部阴影的影响。 ud恒定局部阴影定义为系统会根据制造容忍度,电池老化度和随时间的损坏等因素,在系统中模块的电势不匹配。这种阴影类型在所有时间内都应保持大致相同 ud。静态局部阴影被认为是比天空中的云运动慢得多 uds的阴影,并且表示由于环境中存在障碍物而在模块上发生的阴影 ud。 ud最后,瞬态阴影是最快的阴影现象 ud通过云在天空中移动引起的辐照度变化来表示。 ud对最大功率提取策略进行了广泛的回顾。每项技术都根据关键标准进行评估,这些关键标准对于普遍适用的GMPPT策略至关重要。特别是,评估方法是否可靠地找到全局最大值,方法复杂性及其在其他光伏系统中的易用性。分析表明, uda全局全局最大功率提取策略是必需的,其复杂度适中且对系统特定参数的依赖性有限。 ud以简单研究的形式介绍了基于SA的GMPPT方法,表明了该方法在收敛到一个基于GMPP的 udon两个模块PV系统,八个模块PV系统,基本的并网 udsystem并通过对两个串联的BP380 udPV模块的实验验证。 SA方法的关键参数被更详细地探索以评估其对所提出方法的有效性的影响。 ud所提出的GMPPT方法的主要优点是,它与普通扰动相比并没有显着复杂。 (P&O)MPPT udtechnique,但在融合到GMPP方面具有卓越的性能。此外,与通常用于GMPPT的粒子群优化(PSO)方法相比,基于SA的方法具有更低的复杂度,但在收敛到GMPP方面却具有类似的性能。通过并入对不同PSC下GMPP相对位置的理解,该技术得到了改进,以提高准确性和收敛时间。在住宅环境中,关键因素是最大限度地降低成本并确保最高效率。 ud因此,必须实现低成本,低复杂度的MPPT方法才能实现 udGMPP识别,才能使在住宅环境中实现的系统得以利用在最大程度上。

著录项

  • 作者

    Lynden SL;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号