首页> 外文OA文献 >Digital computer calculation of power system short circuit and load flow utilising diakoptics and sparsity techniques
【2h】

Digital computer calculation of power system short circuit and load flow utilising diakoptics and sparsity techniques

机译:利用透光度和稀疏度技术对电力系统短路和潮流进行数字计算机计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In part A a non-singular connection matrix is used to combine the self and mutual impedance matrix of a group of mutually coupled elements with a network bus impedance matrix; the resulting impedance matrix is then reduced by eliminating rows and columns if necessary, to give the bus impedance matrix of the interconnected network. The self impedances of the mutually coupled group of elements are added to the network bus impedance matrix in the same way as uncoupled elements, then the mutual impedances Are added followed by matrix reduction. By considering examples of the connection matrix applied to adding a single element, then to adding groups of uncoupled and coupled elements to a network, rules are devised for combining the celf impedances of branch and loop elements and group mutual imped-ances with the network bus impedance matrix.ududFrom the bus impedance matrix of power system sequence networks fault parameters are derived by simple arithmetic operations. It is shown that rules for adding a group of mutually coupled loop elements can be applied to modify a bus impedance matrix when element self and mutual impedances are changed. The derivation of an equivalent network from the bus impedance matrix is noted; the addition of two network bus impedance matrixes is considered and shown to be a special case of the more general problem of adding a self and mutual impedance matrix to a bus impedance matrix. A numerical example involving the calculation and modification of the bus impedance matrix, deriving an equivalent circuit and adding bus impedance matrixes is included.ududAn outline of a digital computer power system short circuit programme which calculates fault parameters from the bus impedance matrix derived from randomly ordered lists of network element self and mutual impedances is given.ududThe inverse of the connection matrix discussed in part A is used in part B to combine a network bus admittance matrix with the self and mutual admittance matrix of a group of mutually coupled elements. From this the Well known method of forming the bus admit-tance matrix from uncoupled element self admittances follows and is extended to cover self and mutual admittances of coupled elements. For a group of mutually coupled elements, the diagonal terms of the group admittance matrix are added to the bus admittance matrix in the same way as self admittances of uncoupled elements while the off-diagonal terms are added in a matrix operation either before or after the diagonal terms. A relationship is indicated between the admit-tance connection matrix and the group element bus incidence matrix.ududAlthough the presence of mutual coupling results in some loss of spal-sity, it is shown that for power systems the bus admittance matrix still has a large proportion of zero terms. By eliminating terms below the main diagonal in an optimal order, a "factored inverse" of the admittance matrix is derived which has considerably fewer non-zero terms than the corresponding bus impedance matrix. Terms of the Impedance matrix can be obtained from the inverse as required. The numerical calculation of the bus admittance matrix of a power system zero sequence network is set out and derivation of fault impedance and current distribution factors included.ududA digital computer programme using the bus admittance matrix and factored inverse method for power system short circuit studies is described and a tabulation indicates the affect on computer storage requirements of the optimal factoring procedure.ududIn part C Newton's method of power system load flow calculation using Gaussian elimination to solve the voltage correction equations is discussed. The network and problem parameters are specified in rectangular cartesian co-ordinates. As the voltage correction equation matrix has the same form as the bus admittance matrix, a preferred order for the Gaussian elimination which preserves sparsity is devised by analogy with network reduction.ududA digital computer load flow programme is outlined and a tab-ulation included which shows that, for typical power system networks, the preferred elimination order retains sparsity in the matrix.ududAlgol listings of the digital computer short circuit and load flow programmes are included in the supplement with data and corresponding calculated results for power system studies.
机译:在A部分中,使用非奇异的连接矩阵将一组相互耦合的元素的自阻抗和互阻抗矩阵与网络总线阻抗矩阵进行组合;然后,通过消除行和列(如有必要)来减少所得的阻抗矩阵,以提供互连网络的总线阻抗矩阵。相互耦合的元素组的自阻抗以与未耦合元素相同的方式添加到网络总线阻抗矩阵,然后添加互阻抗,然后进行矩阵归约。通过考虑应用于添加单个元素的连接矩阵示例,然后向网络添加未耦合和耦合的元素组,设计了规则,将分支和环路元素的小阻抗和组互阻抗与网络总线相结合阻抗矩阵。 ud ud从电力系统顺序网络的总线阻抗矩阵中,可通过简单的算术运算得出故障参数。示出了,当元件自身和互阻抗改变时,用于添加一组相互耦合的环路元件的规则可以应用于修改总线阻抗矩阵。记录了从总线阻抗矩阵得出的等效网络。考虑将两个网络总线阻抗矩阵相加,并显示这是将自阻抗和互阻抗矩阵添加到总线阻抗矩阵这一更普遍问题的特例。包括一个涉及计算和修改总线阻抗矩阵,导出等效电路并添加总线阻抗矩阵的数值示例。 ud ud数字计算机电源系统短路程序的概述,该程序根据所导出的总线阻抗矩阵计算故障参数 ud ud在部分B中使用了A部分中讨论的连接矩阵的逆矩阵,以将网络总线导纳矩阵与一组B的自和互导矩阵相结合。相互耦合的元素。由此,遵循了由未耦合的元素自导率形成总线导纳矩阵的公知方法,并且该方法被扩展以覆盖耦合的元素的自导率和互导率。对于一组相互耦合的元素,以与未耦合元素的自导性相同的方式,将组导纳矩阵的对角项添加到总线导纳矩阵中,而在矩阵运算之前或之后在矩阵运算中添加非对角项。对角项。导纳连接矩阵与群元母线入射矩阵之间存在关系。 ud ud尽管存在互耦会导致一定程度的杂散性损失,但对于电力系统,母线导纳矩阵仍然具有零项的比例很大。通过以最佳顺序消除主对角线以下的项,可以得出导纳矩阵的“因式逆”,该项的非零项比相应的总线阻抗矩阵少得多。阻抗矩阵的项可以根据需要从逆中获得。给出了电力系统零序网络的母线导纳矩阵的数值计算,并包括了故障阻抗和电流分布因子的推导。 ud ud使用母线导纳矩阵和因数逆方法的数字计算机程序,用于电力系统短路描述了一些研究,并列出了表,指出了最佳分解程序对计算机存储要求的影响。 ud ud在C部分中,讨论了使用高斯消除法解决电压校正方程的牛顿电力系统潮流计算方法。网络和问题参数在矩形笛卡尔坐标中指定。由于电压校正方程矩阵的形式与母线导纳矩阵的形式相同,因此通过类似于网络减少的方法,设计出了保留稀疏性的高斯消除的优选阶次。 ud ud概述了数字计算机潮流程序并给出了表格包括在内,这表明,对于典型的电力系统网络,首选消除顺序在矩阵中保留稀疏性。 ud ud数字计算机短路和潮流程序的Algol清单包含在补充资料中,其中包含电力系统的数据和相应的计算结果学习。

著录项

  • 作者

    Prebble WA;

  • 作者单位
  • 年度 1976
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号