首页> 外文OA文献 >Integrated microchip methods for biological and environmental sample analysis
【2h】

Integrated microchip methods for biological and environmental sample analysis

机译:用于生物和环境样品分析的集成微芯片方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The introduction of the “microscale total analysis system (μTAS)” concept in theudlate 80’s triggered the evolution of microfluidic devices that cover a vast range ofudapplications. Automation, integration of multiple processes, and near zero deadudvolume for separation techniques are some benefits. Closing the gap between researchudand commercialization in a resource-limited environment is the main aim of thisudresearch.udThis project feeds into two main streams. The first is to integrate on-chip sampleudpreparation for biological applications, like therapeutic drug monitoring (TDM) anduddiagnostics, using nanojunctions created by controlled dielectric breakdown (ChaptersudOne - Five). The second part focuses on fast prototyping of microfluidic devices withudmultiple integrated functionalities using a consumer-based 3D-printer (Chapters Sixud& Seven). These two approaches were tailored to solve specific problems inherent toudeach sample type and application.udChapter One starts with a general introduction to the unique ion transportudphenomena associated with nanojunctions. Many factors act together to determineudwhether a certain ion will be blocked or preferentially transported through theudnanojunction. I developed controlled dielectric breakdown as a cost-effectiveudalternative to conventional nanolithography methods. Pore size control was achievedudby tuning the breakdown voltage in response to the feedback current measuredudthrough the formed nanojunction. Higher pre-set current limits result in larger poreudsize and hence the nanojunction will be permeable to larger molecules. I demonstrateudthe use of single nanojunction for simple extraction and the use of two nanojunctionsudacting together to form a size/mobility trap (SMT) for the simultaneous extraction,udconcentration, and desalting. In the SMT format, the second nanojunction wasudintroduced on the other side of the separation channel and offset by a 500 μm. Whileudthe role of the first junction remains the same, extraction, the second junction madeudwith smaller pore size blocks the analyte but permits smaller ions. The twoudnanojunctions work together as a trap that concentrates the injected plug andudsimultaneously desalt it. This approach is very flexible and can be tuned for differentudapplications as demonstrated in the following chapters.udChapter Two is an introduction to microfluidic systems used for analysis of smalludmolecules, especially pharmaceuticals, in biological samples. The methods wereudreviewed regarding the hardware and fluid handling processes. The chapter concludesudby discussing the requirements for point-of-care devices and decision making basedudon the results obtained. There are still many challenges and issues that need to beudaddressed before the wide spread use of these devices becomes a reality.udIn Chapter Three, the pore size of the nanojunctions was optimized for theudanalysis of small molecules in blood. First, a single nanojunction was integratedudbetween the sample compartment and the separation channel of the microfluidicuddevice. The nanojunction will permit the analyte of interest and small ions but blockudblood cells and other macromolecules. Isotachophoresis (ITP) and blue light emittinguddiodes (LEDs) were employed for the determination of small organic acids in bloodudwith indirect fluorescence detection. The acids chosen in this study were pyruvate,udlactate, and 3-hydroxy butyrate due to their significance as biomarkers for diabetesudand ketoacidosis. The single nanojunction allowed for the extraction of acids directlyudfrom whole blood within 60 s without interference from other macromolecules. Theudlimit of detection (LOD) was 12.5 mM and can be further improved by changing theudmicrochannel geometry near the detection point.udThe need for point-of-care devices for TDM was addressed through twoudexamples: quinine (an example for positively charged drug) and ampicillin (anudexample for negatively charged drug). Quinine is a counter-ion at the experimentaludconditions employed, which is also the case for many pharmaceuticals likeudantidepressants, and hence its transport is favoured through the negatively chargedudnanojunction. A single nanojunction was integrated between the sample compartmentudand the separation channel of the microfluidic device for extraction. Peak mode ITPudwas employed to concentrate the injected plug and achieve a linear response thatudcovers the therapeutically relevant range. Direct fluorescence detection was feasibleuddue to the native fluorescence of quinine.udFinally, SMTs were employed for TDM of ampicillin. This eliminated the needudto use other preconcentrating techniques like ITP. The electroosmotic flow (EOF) canudbe tuned in relation to the electrophoretic mobility by carefully selecting the buffers inudthe separation channel and the waste/desalting channel. This enables trapping of ionsudwithin a certain size/mobility range. Ampicillin is one of the front line antibioticsudused for managing sepsis, a critical condition with 30-50% mortality rate. The deviceudmay facilitate accurate dose adjustment and improve the survival of septic patients.udChapter Four is a general introduction to different electrokinetic methods forudbiological sample pretreatment with an interest in biopolymers like proteins andudDNA. A special attention was given to devices that incorporate nanojunctions as theyudexhibit unique behaviour and have already being demonstrated for DNAudmanipulation, protein concentration, and single molecule detection. Their use wasudhighlighted for sample pretreatment processes like purification, extraction, andudconcentration.udChapter Five demonstrates the use of the developed nanojunction methods forudbiopolymer applications. The single nanojunction format was employed toudconcentrate sodium dodecyl sulphate (SDS)-protein complexes from high ionicudstrength buffers. Enhancement factors up to 80-fold were achieved within 200 s. Theudabove mentioned SMTs were employed for the direct extraction of short single strandudDNA (ssDNA), 20 bases, from blood. As examined with small molecules, DNAudmolecules were extracted into the separation channel while cells and proteins wereudblocked. The second nanojunction trapped the DNA in the separation channel leadingudto simultaneous concentration and desalting. The LOD achieved for fluoresceinudlabelled DNA was 12.5 nM.udChapter Six is an introduction to 3D-printing. Different modes were discussedudand compared regarding their capabilities and suitability for microfluidic applications.udThis was followed by brief discussion of the recent portable systems reported forudenvironmental analysis and design requirements in comparison to biological samples.udChapter Seven explores the microfabrication capabilities of a desktop 3D-printerudbased on stereolithography (SL). The printer employed for this work is audcommercially available low-cost printer that photocures a clear resin that resemblesudpolymers commonly used for large-scale manufacturing. A wide range of microfluidicudprocesses was demonstrated like mixing, gradient generation, droplet extraction andudITP. Multiple functionalities were integrated into one device for nitrate analysis inudwater. The final design features standard addition at five levels to correct for theudmatrix effect, passive mixers to shorten reaction time, and detection at different pathudlengths to extend the linear response range and accommodate samples regardless ofudtheir initial concentration. Development and refining of the design was accelerated byudthe short turn-around times as 3D objects were printed at 2 cm/h speed, in heightudregardless of xy dimensions. The low price of the printer makes it a very accessibleudtool for small research laboratories.udIn Chapter Eight, I summarise the findings of this project and suggest futureuddirections. The outcomes of this research provide valuable solutions for multipleudprocess integration for on-site analysis. Whether it is dielectric breakdown forudcontrolled integration of nanojunctions or fast prototyping of complex devices, bothudapproaches are simple and low-cost. They are suitable for disposable devices and onsiteudanalysis and there is still a great opportunity for improvement in this area.
机译:udlate 80'中引入了“微型总分析系统(μTAS)”概念,引发了涵盖多种应用的微流体设备的发展。自动化,多个过程的集成以及分离技术的死体积/产量几乎为零是一些好处。缩小资源受限环境中的研究与商业化之间的鸿沟是本研究的主要目标。该研究分为两个主要部分。第一种方法是使用受控介电击穿产生的纳米结来集成用于生物学应用的片上样品样品制备,例如治疗药物监测(TDM)和 uddiagnostics(章节 udOne-五)。第二部分着重于使用基于消费者的3D打印机(第六章和第七章),对具有 udmultiple集成功能的微流体设备进行快速原型设计。这两种方法是为解决 udeach样品类型和应用所固有的特定问题而量身定制的。 ud第一章从对与纳米结相关的独特离子迁移 udphenomena的一般介绍开始。许多因素共同作用,确定某个离子是否会被阻挡或优先通过纳米结传输。我开发了可控的介电击穿技术,它比传统的纳米光刻技术更具成本效益。通过响应于通过形成的纳米结测量的反馈电流来调节击穿电压来实现孔径控制。较高的预设电流限制会导致较大的孔径,因此纳米结将可透过较大的分子。我演示了使用单个纳米结进行简单提取,以及使用两个纳米结一起形成一个大小/迁移率陷阱(SMT)以便同时进行提取,浓缩和脱盐。在SMT格式中,第二个纳米结在隔离通道的另一侧引入并偏移了500μm。虽然第一连接的作用保持不变,但提取时,第二连接制成的孔径较小,可以阻挡分析物,但允许较小的离子。这两个 udnano结共同作为一个陷阱,将注入的塞子浓缩并同时进行脱盐。这种方法非常灵活,可以针对不同的应用进行调整,如以下各章所示。第二章介绍了用于分析生物样品中小分子(尤其是药物)的微流体系统。有关硬件和流体处理过程的方法未经审核。本章总结 ud,讨论了即时医疗设备的要求和基于 u结果的决策。在这些设备的广泛使用成为现实之前,仍然有许多挑战和问题需要解决。 u第三章,纳米结的孔径被优化用于血液中小分子的分析。首先,将单个纳米结集成在样品室和微流控设备的分离通道之间。纳米结将允许感兴趣的分析物和小离子,但会阻止 udblood细胞和其他大分子。同位素电泳(ITP)和蓝色发光二极管(LED)用于间接荧光检测法测定血液中的微量有机酸。在本研究中选择的酸是丙酮酸,丁二酸和3-羟基丁酸,因为它们作为糖尿病 udand酮症酸中毒的生物标志物具有重要意义。单个纳米结可在60 s内直接从全血中提取酸,而不受其他大分子的干扰。 udd的检测极限(LOD)为12.5 mM,可以通过更改 udud在检测点附近的微通道几何形状来进一步改善。 udTDM的即时护理设备的需求通过两个 udexamples解决:奎宁(一个示例(带正电荷的药物)和氨苄西林(带负电荷的药物的一个例子)。在采用的实验条件下,奎宁是一种抗衡离子,对于许多药物(如抗抑郁药)也是如此,因此,通过负电荷的 udnanojunction有利于奎宁的转运。在样品室和微流装置的分离通道之间集成了一个纳米结,用于提取。使用峰模式ITP来浓缩注入的塞子并获得发现治疗相关范围的线性响应。由于奎宁的天然荧光,直接荧光检测是可行的。 ud最后,SMT被用于氨苄青霉素的TDM。这样就无需使用其他预浓缩技术(如ITP)。通过仔细选择分离通道和废物/脱盐通道中的缓冲液,可以相对于电泳迁移率调节电渗流(EOF)。这使得能够在一定的大小/迁移率范围内捕获离子。氨苄西林是用于治疗败血症的一线抗生素之一,败血症是一种致命病,死亡率为30-50%。该设备可以促进准确的剂量调整并提高败血病患者的生存率。第四章介绍了对电动样本预处理的不同电动方法,对蛋白质和蛋白质的生物聚合物感兴趣。由于纳米结具有独特的行为,因此特别注意了结合了纳米结的器件,这些器件已被证明可用于DNA操纵,蛋白质浓缩和单分子检测。他们的用途在样品预处理过程中(如纯化,提取和浓缩)得到了强调。第五章证明了已开发的纳米结方法在生物聚合物应用中的应用。单个纳米结形式用于从高离子高强度缓冲液中浓缩十二烷基硫酸钠(SDS)-蛋白质复合物。在200 s内达到了高达80倍的增强因子。上文提到的SMT用于从血液中直接提取20个碱基的短单链udDNA(ssDNA)。用小分子检查,DNA udmolecules提取到分离通道中,而细胞和蛋白质 ublocked。第二个纳米结将DNA捕获在分离通道中,导致同时浓缩和脱盐。荧光素未标记的DNA的LOD为12.5 nM。 ud第六章是3D打印的简介。 ud讨论了不同的模式,并比较了它们的功能和对微流体应用的适用性。 ud之后,简要讨论了报告的便携式系统,与生物样品相比的环境分析和设计要求。 ud第七章探讨了微系统的微制造能力。基于立体光刻(SL)的桌面3D打印机 ud。用于这项工作的打印机是市售的低成本打印机,该打印机可以光固化类似于通常用于大规模生产的聚合物的透明树脂。展示了广泛的微流体/ ud过程,例如混合,梯度生成,液滴提取和udITP。将多种功能集成到一台用于水中硝酸盐分析的设备中。最终设计的特点是在五个级别添加标准品以校正 udmatrix效应,无源混频器缩短反应时间,并在不同路径 udlength进行检测以扩展线性响应范围并容纳样品,而无需考虑其初始浓度。短的周转时间加快了设计的开发和完善,因为3D对象以2 cm / h的速度打印,高度不取决于xy尺寸。打印机的低价格使其成为小型研究实验室的便捷工具。 ud在第八章中,我总结了该项目的发现并提出了未来的方向。这项研究的结果为现场分析的多 udprocess集成提供了有价值的解决方案。无论是用于纳米结的不受控制的集成的介电击穿,还是复杂器件的快速原型制作,这两种方法都是简单且低成本的。它们适用于一次性设备和现场分析,并且在此领域仍有很大的改进机会。

著录项

  • 作者

    Shallan AI;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号