首页> 外文OA文献 >A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes
【2h】

A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes

机译:动态接触的Nitsche有限元方法:1.半离散问题分析和时间行进方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche's method which was initially designed for Dirichlet's condition. A main interesting characteristic is that this approximation produces well-posed space semi-discretizations contrary to standard finite element discretizations. This paper is then mainly devoted to present an analysis of the semi-discrete problem in terms of consistency, well-posedness and energy conservation, and also to study the well-posedness of some time-marching schemes (theta-scheme, Newmark and a new hybrid scheme). The stability properties of the schemes and the corresponding numerical experiments can be found in a second paper.
机译:本文基于有限元方法和最初为Dirichlet条件设计的Nitsche方法的改进,提出了一种弹性动力学无摩擦接触问题的新近似方法。一个主要的有趣特征是,这种近似会产生与标准有限元离散化相反的适定空间半离散。然后,本文主要致力于从一致性,良好定位和节能方面对半离散问题进行分析,并研究一些时间步调方案(θ方案,Newmark和a)的良好定位。新的混合方案)。该方案的稳定性和相应的数值实验可以在第二篇论文中找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号