首页> 外文OA文献 >Residence times and mixing of a novel continuous oscillatory flow meso reactor
【2h】

Residence times and mixing of a novel continuous oscillatory flow meso reactor

机译:新型连续振荡流介观反应器的停留时间和混合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel meso reactor based on oscillatory flow technology (Harvey et al., 2001) has beenrecently presented in Harvey et al. (2003) as a new technology for reaction engineering andparticle suspension applications. Due to the demonstrated enhanced performances for fluid micromixing and suspension of catalyst beads and to the small volume of the reactor, this novelminiature reactor is suitable for applications at specialist chemical manufacture and highthroughput screening. Furthermore, a high control of environment conditions (e.g. mixingintensity, temperature) coupled with an online monitoring turns this reactor suitable for smallscaleapplications to the bioengineering field, such as for fast parallel bioprocessing tasks.This work concerns with the fluid dynamics characterisation of a novel miniature reactor.Experimental results using state-of-art fibre-optic technology is used in order to demonstrate thatan accurate control of the residence time distribution (RTD) of liquid and solid phases can beachieved within this reactor as well as enhanced (oxygen) mass transfer rates. Furthermore,numerical simulations using Fluent ® software will be presented where simulated RTDs agreeswith the experimental results.The meso reactor unit consists of 4.4 mm internal diameter and 35 cm long jacketed glass tubes,with a unit volume of 4.5 ml and provided with smooth periodic constrictions (SPCs), with anaverage baffle spacing of 13 mm. The internal diameter at the constricted zone (baffle internaldiameter) is 1.6 mm, leading to a reduction of the baffle free are of 87 %. This unit is able tosupport batch or continuous operations mode, simply by configuring the tubes in parallel or inseries, according to the intended application. Mixing is achieved by oscillating the fluid at thebottom or the top of the reactor by means of a piston pump, using oscillation amplitudes andfrequencies ranging from 0 to 4 mm centre-to-peak and 0 to 25 Hz, respectively.Experimental studies using the Particle Image Velocimetry (PIV) technique (Harvey et al., 2003)showed that different fluid mechanics are originated at different oscillation conditions(oscillation amplitudes and frequencies). A plug flow or a stirred tank behaviour can be obtainedjust by controlling the oscillation conditions. At low oscillatory Reynolds numbers (Reo), e.g. 10to 100, the formation of axisymmetric eddies detached from the constrictions is coupled with lowaxial velocities and makes it possible to continuously operate the reactor in a plug flow mode.Increasing the Reo to values higher than 100, the eddy symmetry is broken and a completemixing state is achieved inside the meso reactor. Low oscillation amplitudes must be used ifaxial dispersion is intended to be minimized, namely at plug flow setup.Through an overall oscillation cycle, changes of the location of the main flow stream from nearthe wall to the centre of each cavity and vice-versa was observed and is expected to lead to highmass and heat transfer rates (Perry, 2002). Due to the observed high radial velocities, narrowresidence times distributions are expected to be obtained (Perry, 2002). Also high axialcirculation rates were also observed at high Reos (above 100) and it was proved to lead to anenhanced performance on catalyst beads suspension. The relation of this fluid mechanics withthe real performance of this novel meso reactor will be demonstrated.Tracer injection technique is applied to perform RTD studies inside a single SPC tube of themeso reactor. Spectroscopy UV/VIS technique is used to measure the concentration of acoloured tracer at the inlet and outlet (at continuous mode) or at the bottom and the top of thetube (at batch mode). A fibre optic apparatus is employed in order to obtain highly accurateonline measurements of the UV/VIS absorbance. Mixing times are calculated for experiments atbatch mode. Different flow rates are used to determine the effect of the flow rate over the RTD atcontinuous operation and axial dispersion is presented by the Bodenstein number, Bo.Determination of KL.a values is achieved by online measurement of the oxygen concentrationusing a special fibre optic probe. The working tip of the probe was dip-coated with a rutheniumcomplex immobilised in a sol-gel matrix. This complex is excited to fluorescence by a blue led(470 nm outpuk peak) and the level of the fluorescence is inversely related to the concentrationof the oxygen through the Stern-Volmer equation (Wang et al., 1999), which is measured by thefibre-optic apparatus. Retention of solid phases (e.g. catalyst beads and yeast cells) inside themeso reactor will also be tested.Further studies using the Computation Fluid Dynamics (CFD) technique will be presented whereaccurate prediction of the distribution of residence times is achieved. The use of the distributionfunctionspermits to classify the flow behaviour inside this novel meso reactor patterns and tocalculate mixing efficiencies and axial dispersion coefficients (expressed by the Bo number) atdifferent oscillation conditions.A simple 2-D axisymmetric laminar model showed good agreement with flow patternsvisualisations using PIV for Reo below 100 but a 3-D model with a very fine mesh was requiredto simulate breakage of axisymmetry. Consequently, 3-D models based on laminar and LargeEddy Simulations (LES) will be used to maximize the matching of RTD at higher oscillationconditions. Main intended application of CFDs to this novel meso reactor is the design of a mesoreactor unit, which could operate at the best oscillation conditions and flow rate for cell culturesand biocatalyst applications.
机译:最近,Harvey等人提出了一种基于振荡流技术的新型介观反应器(Harvey等,2001)。 (2003)作为反应工程和颗粒悬浮应用的新技术。由于在流体微混合和催化剂珠粒的悬浮方面表现出增强的性能,并且反应器体积小,因此这种新型微型反应器适用于专业化学品生产和高通量筛选的应用。此外,对环境条件(例如混合强度,温度)的高度控制与在线监测相结合,使该反应器适合于生物工程领域的小规模应用,例如快速并行的生物处理任务。这项工作涉及新型微型流体的流体动力学表征为了证明精确控制液相和固相的停留时间分布(RTD)可以在该反应器内实现平衡并增强(氧气)的质量传递,使用了使用最先进的光纤技术的实验结果费率。此外,将介绍使用Fluent®软件进行的数值模拟,其中模拟的RTD与实验结果相符。中观反应堆装置由内径4.4 mm和长35 cm的夹套玻璃管组成,单位体积为4.5 ml,并具有平滑的周期性收缩(SPC),平均挡板间距为13毫米。收缩区的内径(挡板内径)为1.6 mm,从而减少了87%的自由挡板。根据预期的应用,只需将管并联或串联配置,该单元就可以支持批量或连续操作模式。通过使用活塞泵使反应器底部或顶部的流体振荡来实现混合,振荡幅度和频率分别在0至4 mm的中心到峰值和0至25 Hz的频率范围内。图像测速(PIV)技术(Harvey等,2003)表明,不同的流体力学起源于不同的振荡条件(振荡幅度和频率)。可以通过控制振荡条件来获得活塞流或搅拌釜的行为。在低振荡雷诺数(Reo)时,例如10至100时,从颈缩处分离出来的轴对称涡流的形成与低轴速度相关联,从而使反应器可以在活塞流模式下连续运行.Reo增大到高于100的值时,涡流对称性被破坏并且处于完全混合状态在介观反应堆内部实现。如果要使轴向弥散最小化(即在塞流设置时),则必须使用低振荡幅度。在整个振荡周期中,观察到主流的位置从壁附近到每个腔体中心的变化,反之亦然并预计会导致大量传热(Perry,2002)。由于观测到的高径向速度,预计将获得较窄的驻留时间分布(Perry,2002)。在高Reos(高于100)下也观察到了较高的轴向循环速率,并被证明可以提高催化剂珠粒的悬浮性能。该流体力学与这种新型介观反应器的实际性能之间的关系将得到证实。跟踪注入技术用于在主题反应器的单个SPC管内进行RTD研究。光谱学UV / VIS技术用于在入口和出口(连续模式)或管的底部和顶部(分批模式)测量彩色示踪剂的浓度。为了获得高精度的UV / VIS吸光度在线测量结果,使用了光纤设备。计算批量模式下的实验混合时间。使用不同的流速来确定流速对RTD连续运行的影响,轴向分散度由Bodenstein数Bo表示.KL的测定通过使用特殊的光纤探头在线测量氧浓度来实现。探针的工作尖端用固定在溶胶-凝胶基质中的钌配合物浸涂。该复合物被蓝色led(470 nm outpuk峰)激发为荧光,通过Stern-Volmer方程,荧光水平与氧浓度成反比关系(Wang等,1999)。由光纤设备测量。还将测试themesso反应器内固相(例如催化剂珠和酵母细胞)的保留情况。将提出使用计算流体动力学(CFD)技术进行的进一步研究,从而可以准确预测停留时间的分布。使用分布函数可以对这种新型介观反应堆模式内的流动行为进行分类,并计算在不同振荡条件下的混合效率和轴向弥散系数(以Bo数表示)。简单的二维轴对称层流模型与使用流动模式可视化具有良好的一致性Reo的PIV低于100,但是需要使用具有非常精细网格的3-D模型来模拟轴对称性的破坏。因此,基于层流和大涡模拟(LES)的3-D模型将用于在较高振荡条件下最大化RTD的匹配。 CFD在此新型介观反应器中的主要应用是介观反应器单元的设计,该单元可以在细胞培养和生物催化剂应用的最佳振荡条件和流速下运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号