首页> 外文OA文献 >A study of the mechanical properties of vapour grown carbon fibres and carbon fibre-thermoplastic composites
【2h】

A study of the mechanical properties of vapour grown carbon fibres and carbon fibre-thermoplastic composites

机译:气相生长碳纤维和碳纤维热塑性复合材料的力学性能研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As fibras de carbono produzidas na fase de vapor (VGCFs) combinam custos de produção potencialmente baixos com propriedades mecânicas, térmicas e eléctricas favoráveis. Istotorna-as de especial interesse para as aplicações onde as fibras de carbono, baseadas no pitch ou no poliacrilonitrilo (PAN) (designadas por fibras 'convencionais') são demasiado caras e as fibras de vidro não apresentam as propriedades necessárias.O presente projecto de investigação visou três objectivos. Em primeiro lugar, estudarsistematicamente as diferentes morfologias em que as VGCFs podem ser produzidas e avaliaro seu efeito nas propriedades mecânicas. Em segundo lugar, obter conhecimentos sobre a produção de compósitos de VGCF e matriz termoplástica. A determinação das propriedadesmecânicas dos compósitos permite avaliar o desempenho das VGCFs como reforço de termoplásticos. Finalmente, pretende-se desenvolver modelos micromecânicos para prever aspropriedades mecânicas mais relevantes dos materiais produzidos. Usando estes modelosinversamente, é possí­vel derivar as propriedades das fibras. No caso de VGCFs com diâmetros menores que 1 mm (VGCFs sub-micrométricas), é esta a unica maneira para determinar estas propriedades.Estudaram-se sistemáticamente as diferentes morfologias em que as VGCFs podem ser produzidas e avaliou-se o efeito da forma sobre as propriedades mecânicas das fibras. Concluiu-se que a forma não influencia significativamente o valor do módulo à tracção. No entanto, as fibras com forma diferente de cilindros perfeitos têm uma resistência de ruptura à  tracção mais baixa. Globalmente, o módulo e a resistência à  tracção são significativamente mais baixos do que os das fibras de carbono, ex-pitch ou ex-PAN, comercialmente disponí­veis. Mostrou-se também que o método da fragmentação não pode ser usado para avaliar a qualidade da interface destas fibras em compósitos de matriz polimérica, qualquer que seja a morfologia. Isto deve-se ao tipo de rotura, que é inerente à  estrutura interna das VGCFs.Produziam-se e processaram-se compósitos termoplásticos reforçados com VGCFs submicrométricas usando tecnologias commerciais, sem problemas significativos, sempre que seutilizou o equipamento apropriado. Para avaliar o desempenho das VGCFs, as propriedades dos compósitos foram determinadas e comparadas com as dos reforçados com fibras convencionais. Verificou-se que os compósitos de VGCFs podem ser produzidos com resistência à  ruptura e coeficiente de expansão térmica (CTE) comparáveis, embora com rigidez mais baixa, do que as daqueles compósitos.Usaram-se modelos micromecânicos disponí­veis na literatura e um novo modelo para prever a rigidez, o CTE e a resistência à  ruptura de compósitos reforçados com fibras curtas, a partirdas propriedades da fibra e da matriz. Os modelos foram verificados experimentalmente eaplicados inversamente para calcular as propriedades das VGCFs sub-micrométricas.Concluiu-se que as VGCFs têm um CTE aparente mais alto do que o das fibras de carbonoex-PAN e rigidez mais baixa. Embora a resistência à  ruptura das fibras não possa sercalculada, dado que o comprimento da maioria das fibras é inferior ao comprimento crí­tico, ametodologia de modelação inversa permite determinar a resistência ao corte interfacial.Mostra-se que a adesão interfacial entre as VGCFs e a matriz termoplástica é comparável à das fibras de carbono convencionais. As diferenças de propriedades entre os compósitos deVGCF e os reforçados com fibras de carbono ex-PAN, podem ser atribuí­das à  diferença depropriedades das fibras. Além disso, concluiu-se que a rigidez e o CTE aparentes das VGCFssub-micrométricas são, pelo menos, tão boas como as das fibras de vidro.Vapour Grown Carbon Fibres (VGCFs) combine potentially low production costs with encouraging mechanical, thermal and electrical properties. This makes them of specific interest for applications where ex-pitch- and ex-polyacrylonitrile (PAN) carbon fibres (designated by 'conventional' fibres) are too expensive, and glass fibres cannot provide therequired properties.A research was carried out with three goals. First, to study systematically the differentmorphologies in which VGCFs can be produced and to evaluate their effect on the mechanicalproperties. Second, to develop know-how on the production of thermoplastic-VGCF composites. The determination of the mechanical properties of the composites allows the assessment of VGCFs as reinforcements of thermoplastics. Finally, to develop micromechanical models to predict the more relevant mechanical properties of the materials produced. By using these models inversely, it is possible to derive the properties of the fibres. In the case of VGCFs with diameters below 1 mm (submicron VGCFs) this is the only way to determine these properties.The different morphologies in which VGCFs can be grown were studied systematically and the effect of the shape on the mechanical properties of the fibres evaluated. It was concluded that the shape of the VGCFs has a small influence on the value of the tensile modulus. However, fibres with shapes different from perfect cylinders, have a lower tensile strength. Overall, both the tensile modulus and strength were significantly lower than those of commercially available ex-pitch- or ex-PAN carbon fibres. Furthermore, it was shown that the fragmentation method cannot be used to assess the quality of the interface of these fibres in polymeric matrix composites, irrespective of the morphology. This is due to the failure mode, which is inherent to the inner structure of the VGCFs.The production and processing of submicron VGCF-reinforced thermoplastic composites was done with commercial technologies, without major difficulties, provided the appropriateequipment was used. To evaluate the performance of the fibres, the properties of the composites were determined and compared to those reinforced with conventional ones. It was found that VGCF-composites can be produced with comparable strength and coefficient of thermal expansion (CTE) but with lower stiffness.Micromechanical models available in the literature and a newly developed model were usedto predict stiffness, CTE and strength of short fibre reinforced composites from the fibre andmatrix properties. The models were validated experimentally and then applied inversely tocalculate the submicron VGCFs properties. It was concluded that VGCFs have an apparent CTE that is higher than that of ex-PAN carbon fibres and a lower stiffness. Although the fibre strength could not be calculated, as most of the fibres are well below the critical length, the inverse modelling methodology allows the determination of the interfacial shear strength. It was shown that the interfacial adhesion between VGCFs and the thermoplastic matrix is comparable to that of conventional carbon fibres. The differences in properties between VGCF- and ex-PAN carbon fibre composites, can be attributed to the differences in fibre properties. Furthermore, it was concluded that the apparent stiffness and CTE of submicron VGCFs are, at least, as good as those of glass fibres.Vapour Grown Carbon Fibres (VGCFs) combineren een potentieel lage kostprijs metveelbelovende mechanische, thermische en electrische eigenschappen. Dit maakt henbijzonder geschikt voor toepassingen waar ex-pitch en ex-polyacrylonitriel (PAN)koolstofvezels (hier ‘conventionele’ vezels genoemd) te duur voor zijn en glasvezels devereiste eigenschappen niet kunnen bieden.Een onderzoek is uitgevoerd, gericht op drie doelen. Ten eerste het systematisch bestuderenvan de verschillende morphologieën waarin VGCFs geproduceerd kunnen worden en huninvloed op de mechanische eigenschappen. Ten tweede het ontwikkelen van kennis op hetgebied van de vervaardiging van VGCF-thermoplastische composieten. Door de mechanischeeigenschappen van de composieten te bepalen, kan de de rol van VGCFs als versterking voorthermoplasten vastgesteld worden. Tenslotte het ontwikkelen van micromechanischemodellen die de relevantere eigenschappen van de geproduceerde materialen kunnenvoorspellen. Door deze modellen omgekeerd te gebruiken, kunnen de eigenschappen van devezels afgeleid worden. Dit is de enige manier om deze eigenschappen te bepalen voorVGCFs met diameters kleiner dan 1 mm (submicron VGCFs).De verschillende morphologieën waarin VGCFs geproduceerd kunnen worden, zijnsystematisch bestudeerd en het effect van de vorm van de vezel op de mechanischeeigenschappen is geëvalueerd. De vorm van de VGCFs blijkt weinig invloed te hebben op dehoogte van de trekstijfheid. Vezels met een andere dan een perfecte cylinder-vorm, hebbenechter een lagere treksterkte. In het algemeen waren zowel de trekstijfheid als de treksterktevan de VGCFs significant lager dan die van commercieel beschikbare ex-pitch of ex-PANkoolstofvezels. Daarnaast is aangetoond dat de fragmentatie-test niet gebruikt kan worden omde kwaliteit van de interface van deze vezel in composieten met een polymeer-matrix tebepalen, ongeacht hun morphologie. Dit komt door hun bezwijkgedrag, dat inherent is aan deinterne structuur van de VGCFs.Submicron VGCF-versterkte thermoplastiche composieten zijn zonder noemenswaardigeproblemen geproduceerd en verwerkt met behulp van commerciele technologieën, ondervoorwaarde dat de geschikte apparatuur gebruikt werd. Om de prestaties van de vezels teevalueren, zijn de eigenschappen van de composieten bestudeerd en vergeleken met die vancomposieten versterkt met conventionele vezels. Het bleek dat VGCF-composietengeproduceerd kunnen worden met een vergelijkbare sterkte en thermischeuitzettingscoefficient (CTE) maar met een lagere stijfheid.Micromechanische modellen beschikbaar uit de literatuur en een nieuw ontwikkeld model zijngebruikt om de stijfheid, CTE en sterkte van korte-vezel versterkte composieten tevoorspellen vanuit de vezel- en matrixeigenschappen. De modellen zijn experimenteelgevalideerd en vervolgens omgekeerd toegepast om de submicron VGCF-eigenschappen teberekenen. Geconcludeerd kan worden dat submicron VGCFs een schijnbare CTE hebben diehoger is dan die van ex-PAN koolstofvezels en een lagere stijfheid. Hoewel de sterkte van devezels niet direct berekend kon worden, omdat de meeste vezels ruim beneden de kritischelengte zijn, maakt invers modelleren wel de afleiding mogelijk van de afschuifsterkte van deinterface tussen matrix en vezel. De hechting tussen VGCFs en de thermoplastische matrixblijkt vergelijkbaar met die van conventionele koolstofvezels. De verschillen ineigenschappen tussen VGCF- en ex-PAN koolstofvezel versterkte composieten kunnenworden toegeschreven aan de verschillen in vezeleigenschappen. Daarnaast is geconcludeerddat de schijnbare stijfheid en CTE van submicron VGCFs zeker zo goed zijn als die vanglasvezels.
机译:气相生产的碳纤维(VGCF)潜在地降低了生产成本,并具有良好的机械,热和电性能。这使它们特别适用于基于沥青或聚丙烯腈(PAN)的碳纤维(称为“常规”纤维)过于昂贵且玻璃纤维没有必要性能的应用。研究针对三个目标。首先,我们将系统地研究可生产VGCF的不同形态,并评估其对机械性能的影响。其次,获得有关VGCF复合材料和热塑性基质生产的知识。确定复合材料的机械性能可以评估VGCF作为热塑性塑料的增强性能。最后,打算开发微机械模型来预测所生产材料的最相关的机械性能。相反地​​,使用这些模型,可以得出纤维的特性。对于直径小于1 mm的VGCF(亚微米级VGCF),这是确定这些性能的唯一方法,系统地研究了可以生产VGCF的不同形态,并评估了形状对形状的影响。纤维的机械性能。结论是,形状不会显着影响拉伸模量的值。但是,除理想圆柱体以外的纤维的拉伸强度较低。总体而言,模量和拉伸强度显着低于市售碳纤维(节距或ex-PAN)。还表明,无论形态如何,破碎方法均不能用于评估这些纤维在聚合物基复合材料中的界面质量。这是由于破裂的类型,这是VGCF内部结构所固有的,只要使用适当的设备,就可以使用商业技术生产并使用经亚微米级VGCF增强的热塑性复合材料,而不会出现重大问题。为了评估VGCF的性能,确定了复合材料的性能,并将其与常规纤维增强的复合材料进行了比较。已经发现,与这些复合材料相比,VGCFs的复合材料可以生产出具有可比的抗拉强度和热膨胀系数(CTE),但刚性较低的材料。根据纤维和基体的特性,预测短纤维增强复合材料的刚度,CTE和抗断裂性。通过对模型进行了实验验证,并反演了亚微米级VGCF的性能,得出的结论是,VGCF的表观热膨胀系数比carbonex-PAN纤维高,刚性较低。尽管无法计算出纤维的断裂强度,但考虑到大多数纤维的长度小于临界长度,但逆向建模方法可以确定对界面剪切的抵抗力,这表明VGCF与基体之间的界面粘附力热塑性塑料可与常规碳纤维相媲美。 VGCF复合材料与用碳纤维ex-PAN增强的复合材料之间的性能差异可归因于纤维性能的差异。此外,结论是亚微米级的VGCF的表观刚度和CTE至少与玻璃纤维一样好,蒸汽生长碳纤维(VGCF)结合了潜在的低生产成本以及令人鼓舞的机械,热和电性能属性。这使得它们特别适用于前沥青和前聚丙烯腈(PAN)碳纤维(以``常规''纤维表示)的碳纤维价格太贵,而玻璃纤维无法提供所需性能的应用。进行了三个目标的研究。首先,系统地研究可生产VGCF的不同形态,并评估其对机械性能的影响。第二,发展生产热塑性-VGCF复合材料的专业知识。确定复合材料的机械性能可以评估VGCF作为热塑性塑料的增强材料。最后,开发微机械模型来预测所生产材料的最相关机械性能。通过反向使用这些模型,有可能得出纤维的特性。对于直径小于1mm的VGCF(亚微米VGCF),这是确定这些性能的唯一方法。系统地研究了可以生长VGCF的不同形态,并评估了形状对纤维机械性能的影响。结论是,VGCF的形状对拉伸模量的值影响很小。但是,形状不同于理想圆柱体的纤维具有较低的拉伸强度。总体而言,拉伸模量和强度均明显低于市售的沥青或碳纤维。此外,已表明,无论形态如何,均不能使用碎裂法评估这些纤维在聚合物基复合材料中的界面质量。这是由于故障模式,这是VGCF内部结构所固有的。亚微米VGCF增强热塑性复合材料的生产和加工是使用商业技术完成的,只要使用了适当的设备,就不会有很大的困难。为了评估纤维的性能,确定了复合材料的性能,并将其与常规纤维增强后的性能进行了比较。研究发现,VGCF复合材料的强度和热膨胀系数(CTE)相当,但刚性较低。文献中提供的微机械模型和新开发的模型用于预测短纤维增强复合材料的刚度,CTE和强度从纤维和基质特性该模型经过实验验证,然后反过来用于计算亚微米VGCFs特性。结论是,VGCF的表观CTE高于ex-PAN碳纤维,并且刚度较低。尽管无法计算纤维强度,但是由于大多数纤维都远低于临界长度,因此逆建模方法可以确定界面剪切强度。结果表明,VGCF和热塑性基质之间的界面粘合力与常规碳纤维相当。 VGCF-和ex-PAN碳纤维复合材料之间的性能差异可归因于纤维性能的差异。此外,得出的结论是,亚微米级VGCF的表观刚度和CTE至少与玻璃纤维一样好。聚丙烯树脂(PAN)的间距不大,通常是聚丙烯树脂(PAN),而玻璃纤维则是硬脂。十种最系统的形形色色的瓦格林VGCF产生了机械性的本色。十个粗花呢面包车VKCF-热塑复合材料。范德堡的机械化门,堪萨斯州的范式VGCF以及大量使用的热塑性塑料。 Tenslotte het ontwikkelen van micromechanischemodellen de relatedereeigenschappen van de geproductionerde materialen kunnenvoorspellen。车门的模型由德国的汽车制造商设计。 VGCF的直径在1毫米(亚微米VGCF)范围内。 De vorm van de VGCF blijkt weinig入侵了hebben op dehoogte van de trekstijfheid。 Vezels遇见了安德烈·丹恩和完美的圆柱体蠕动,hebbenechter和lagere treksterkte。在VGCF中,前Pankoolstofvezels的大型啤酒和商业卡车bechchikbare销距很大。达尔纳斯特(Daarnaast)是由混合测试矩阵和合成网格组成的,它是由片段测试的新测试对象组成的。不常见的问题是固有的一种VGCF结构。摄于梵蒂冈,已经研究了复合材料的性能并将其与常规纤维增强的复合材料的性能进行了比较。研究发现,VGCF复合材料的强度和热膨胀系数(CTE)相当,但刚度较低,文献中提供的微机械模型和新开发的模型已用于预测短纤维增强复合材料的刚度,CTE和强度。纤维和基质的特性。该模型已经过实验验证,然后反向应用于计算亚微米VGCF特性。可以得出结论,亚微米级VGCF的表观CTE值高于前PAN碳纤维,并且刚性较低。尽管无法直接计算纤维强度,但是由于大多数纤维都远低于临界长度,因此逆建模确实可以推导基体和纤维之间的界面剪切强度。 VGCF和热塑性基体之间的粘附力看起来与常规碳纤维相似。 VGCF和ex-PAN碳纤维增强复合材料之间的性能差异可归因于纤维性能的差异。此外,得出的结论是,亚微米VGCF的表观刚度和CTE当然与玻璃纤维一样好。

著录项

  • 作者

    Hattum F. W. J. van;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号