首页> 外文OA文献 >Reconciling gene expression data with regulatory network models – a stimulon-based approach for integrated metabolic and regulatory modeling of Bacillus subtilis
【2h】

Reconciling gene expression data with regulatory network models – a stimulon-based approach for integrated metabolic and regulatory modeling of Bacillus subtilis

机译:使基因表达数据与调节网络模型相一致–基于刺激物的枯草芽孢杆菌的代谢和调节模型整合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The reconstruction of genome-scale metabolic models from genome annotations has become a routine practice in Systems Biology research. The potential of metabolic models for predictive biology is widely accepted by the scientific community, but these same models still lack the capability to account for the effect of gene regulation on metabolic activity. Our focus organism, Bacillus subtilis is most commonly found in soil, being subject to a wide variety of external environmental conditions. This reinforces the importance of the regulatory mechanisms that allow the bacteria to survive and adapt to such conditions. Existing integrated metabolic regulatory models are currently available for only a small number of well-known organisms (e.g E. coli and B. subtilis). The E. coli integrated model was proposed by Covert et al in 2004 and has slowly improved over the years. Goelzer et al. introduced the B. subtilis integrated model in 2008, covering only the central metabolic pathways. Different strategies were used in the two modeling efforts. The E. coli model is defined by a set of Boolean rules (turning genes ON and OFF) accounting mostly for transcription factors, gene interactions, involved metabolites, and some external conditions such as heat shock. The B. subtilis model introduces a set of more complex rules and also incorporates sigma factor activity into the modeling abstraction. Here we propose a genome-scale model for the regulatory network of B. subtilis, using a new stimulon-based approach. A stimulon is defined as the set of genes (that can be a part of the same operon(s) and regulon(s)) that respond in the same set of stimuli. The proposed stimulon-based approach allows for the inclusion of more types of regulation in the model. This methodology also abstracts away much of the complexity of regulatory mechanisms by directly connecting the activity of genes to the presence or absence of associated stimuli, a necessity in the many cases where details of regulatory mechanisms are poorly understood.Our model integrates regulatory network data from the Goelzer et al model, in addition to other available literature data. We then reconciled our model against a large set of high-quality gene expression data (tiled microarrays for 104 different conditions). The stimulons in our model were split or extended to improve consistency with our expression data, and the stimuli in our model were adjusted to improve consistency with the conditions of our expression experiments. The reconciliation with gene expression data revealed a significant number of exact or nearly exact matches between the manually curated regulons/stimulons and pure correlation-based regulons. Our reconciliation analysis of the 2011 SubtiWiki regulon release suggested many gene candidates for regulon extension that were subsequently included in the 2013 SubtiWiki update. Our enhanced model also includes an improved coverage of a wide range of different stress conditions.We then integrated our regulatory model with the latest metabolic reconstruction for B. subtilis, the iBsu1103V2 model (Tanaka et al. 2012). We applied this integrated metabolic regulatory model to the simulation of all growth phenotype data currently available for B. subtilis, demonstrating how the addition of regulatory constraints improved consistency of model predictions with experimentally observed phenotype data. This analysis of growth phenotype data unveiled phenotypes that could only be characterized with the addition of regulatory network constraints.All tools applied in the reconstruction, simulation, and curation of our new regulatory model are now publicly available as a part of the KBase framework. These tools permit the direct simulation of gene expression data using the regulon model alone, as well as the simulation of phenotypes and growth conditions using an integrated metabolic and regulatory model. We will highlight these new tools in the context of our reconstruction and analysis of the B. subtilis regulatory model.
机译:从基因组注释重建基因组规模的代谢模型已成为系统生物学研究的常规方法。代谢模型在预测生物学中的潜力已为科学界所广泛接受,但是这些相同的模型仍然缺乏解释基因调控对代谢活性影响的能力。我们的焦点生物枯草芽孢杆菌最常见于土壤中,并受到多种外部环境条件的影响。这加强了调节机制的重要性,该调节机制使细菌能够生存并适应这种条件。现有的综合代谢调节模型目前仅可用于少数几种知名生物(例如大肠杆菌和枯草芽孢杆菌)。 Covert等人在2004年提出了E. coli整合模型,并在过去几年中逐步改进。 Goelzer等。于2008年引入枯草芽孢杆菌整合模型,仅涵盖中心代谢途径。两次建模工作中使用了不同的策略。大肠杆菌模型由一组布尔规则(打开和关闭基因)定义,这些规则主要考虑转录因子,基因相互作用,涉及的代谢产物以及一些外部条件,例如热休克。枯草芽孢杆菌模型引入了一组更复杂的规则,并且还将sigma因子活动合并到建模抽象中。在这里,我们使用新的基于刺激的方法为枯草芽孢杆菌的调控网络提出了一个基因组规模的模型。刺激物定义为在同一组刺激中作出反应的一组基因(可以是同一操纵子和调控子的一部分)。所提出的基于刺激的方法允许在模型中包括更多类型的调节。这种方法还通过直接将基因的活性与相关刺激的存在或不存在直接联系起来,从而消除了许多调节机制的复杂性,这在许多情况下对调节机制的细节了解甚少。 Goelzer等人的模型,以及其他可用的文献数据。然后,我们针对大量高质量的基因表达数据(针对104种不同条件的平铺微阵列)调整了我们的模型。拆分或扩展我们模型中的刺激子,以提高与表达数据的一致性,并调整模型中的刺激物,以提高与表达实验条件的一致性。与基因表达数据的核对显示,人工策划的调节子/刺激子与基于纯相关性的调节子之间存在大量精确或几乎精确的匹配。我们对2011 SubtiWiki regulon版本的和解分析表明,许多针对regulon扩展的基因候选物随后包含在2013 SubtiWiki更新中。我们的增强模型还包括对各种不同压力条件的改进覆盖,然后将我们的调节模型与枯草芽孢杆菌的最新代谢重建(iBsu1103V2模型)整合在一起(Tanaka等人,2012年)。我们将此集成的代谢调节模型应用于当前可用于枯草芽孢杆菌的所有生长表型数据的模拟,证明了调节约束的添加如何改善了模型预测与实验观察到的表型数据的一致性。这种对生长表型数据的分析揭示了只能通过增加监管网络约束来表征的表型。所有用于重构,模拟和管理我们新监管模型的工具现在都可以作为KBase框架的一部分公开获得。这些工具允许仅使用regulon模型直接模拟基因表达数据,也可以使用集成的代谢和调节模型来模拟表型和生长条件。我们将在我们对枯草芽孢杆菌监管模型的重建和分析中重点介绍这些新工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号