首页> 外文OA文献 >Biomineralization of PbS and PbS-CdS core-shell nanocrystals and their application in quantum dot sensitized solar cells
【2h】

Biomineralization of PbS and PbS-CdS core-shell nanocrystals and their application in quantum dot sensitized solar cells

机译:PbS和PbS-CdS核壳纳米晶体的生物矿化及其在量子点敏化太阳能电池中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biomineralization utilizes biological systems to synthesize functional inorganic materials for application in diverse fields. In the current work, we enable biomineralization of quantum confined PbS and PbS–CdS core–shell nanocrystals and demonstrate their application in quantum dot sensitized solar cells (QDSSCs). An engineered strain of Stenotrophomonas maltophilia is utilized to generate a cystathionine γ-lyase that is active for the biomineralization of metal sulfide nanocrystals from a buffered aqueous solution of metal salts and L-cysteine. In the presence of lead acetate, this enzymatic route generates rock salt structured PbS nanocrystals. Controlling the growth conditions yields ∼4 nm PbS crystals with absorption and photoluminescence peaks at 910 nm and 1080 nm, respectively, consistent with the expected strong quantum confinement of PbS at this size. Quantum yields (QY) of the biomineralized PbS quantum dots, determined after phase transfer to the organic phase, range between 16 and 45%. These are the highest reported QY values for any biomineralized quantum dot materials to date and are comparable with QYs reported for chemically synthesized materials. Subsequent exposure to cadmium acetate results in the biomineralization of a thin CdS shell on the PbS core with a resultant blue-shift in optical properties. The photoluminescence peak shifts to 980 nm, consistent with the expected decrease in band gap energy of a PbS–CdS core–shell heterostructured quantum dot. HAADF-STEM imaging confirms the crystalline structure and size of the particles with complimentary XEDS analysis confirming the presence of Cd, Pb, and S in individual nanocrystals. Integration of these QDs into QDSSCs yields open circuit potentials of 0.43 V and 0.59 V for PbS and PbS–CdS, respectively, consistent with expectations for these materials and previously reported values for chemically synthesized QDs.
机译:生物矿化利用生物系统合成功能性无机材料,可应用于各种领域。在当前的工作中,我们使量子受限的PbS和PbS–CdS核-壳纳米晶体生物矿化,并证明它们在量子点敏化太阳能电池(QDSSC)中的应用。利用工程改造的嗜麦芽窄食单胞菌菌株来生成胱硫醚γ-裂合酶,该酶对于从金属盐和L-半胱氨酸的缓冲水溶液中金属硫化物纳米晶体的生物矿化具有活性。在乙酸铅的存在下,这种酶促途径生成岩盐结构的PbS纳米晶体。控制生长条件,可制得约4 nm的PbS晶体,其吸收峰和光致发光峰分别在910 nm和1080 nm处,这与预期的在此尺寸下PbS的强量子限制相一致。相转移到有机相后确定的生物矿化的PbS量子点的量子产率(QY)在16%到45%之间。这些是迄今为止所有生物矿化量子点材料的最高报告QY值,可与化学合成材料报告的QY相媲美。随后暴露于乙酸镉会导致PbS核心上的CdS薄壳生物矿化,从而导致光学性能发生蓝移。光致发光峰移至980 nm,这与PbS–CdS核–壳异质结构量子点的带隙能量的预期下降一致。 HAADF-STEM成像通过互补XEDS分析证实了颗粒的晶体结构和尺寸,从而证实了单个纳米晶体中Cd,Pb和S的存在。将这些QD集成到QDSSC中,对于PbS和PbS–CdS分别产生0.43 V和0.59 V的开路电势,这与对这些材料的期望以及先前报道的化学合成QD值一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号