首页> 外文OA文献 >Elastohydrodynamic lubrication and surface fatigue modelling of spur gears over the meshing cycle
【2h】

Elastohydrodynamic lubrication and surface fatigue modelling of spur gears over the meshing cycle

机译:啮合循环中圆柱齿轮的弹性流体动力润滑和表面疲劳建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents a modern method to evaluate spur gears based on the transientudelastohydrodynamic lubrication (EHL) emulation of the full meshing cycle, evaluatingudelastic stresses in the gear flanks, collecting the stress history and applying stress andudstrain-life methods to calculate fatigue parameters and cumulative fatigue damage, i.e.udpredicting the fatigue life taking measured surface roughness into account.udThe EHL model is formulated as the coupled system of the hydrodynamic Reynoldsudequation and the elastic deflection equation. These are solved simultaneouslyudincluding the transient effect by incorporating the squeeze film term of the Reynoldsudequation with a Crank-Nicolson discretization of time. The finite differenceuddiscretisation of the elastic deflection equation utilises the differential form firstudformulated at Cardiff to allow coupling of the equations. The Reynolds equation canudbe discretised either by a finite difference or by a finite element method. The coupledudsystem is solved simultaneously either by a narrow bandwidth Gaussian eliminationudor a Gauss-Seidel iterative method.udThe elastic stresses due to the superimposed discrete values of the EHL pressure andudshear stress at the EHL mesh nodes are evaluated by carrying out the necessaryudconvolution of the stresses by a Fast Fourier Transform method. The weightingudfunctions required have been calculated analytically. The stresses are obtained on theudEHL solution mesh and are interpolated to meshes fixed in the pinion and the gearudflanks. They are then sorted and stored efficiently to enable fatigue life predictionudalgorithms to be applied.udA detailed description of the EHL and the stress evaluation models are provided asudwell as a brief description of some fatigue life theories and calculations. The results ofudthe complete analysis are provided for test gears obtained from the NASA Glennudlaboratory fatigue tests and the Newcastle University Design Unit micro-pittingudinvestigation. The analyses were carried out for real operating conditions from gearudtesting under extreme conditions. The surface roughness profiles used were realudmeasured profiles taken from the test gears after initial running-in. The simulationsudreported are therefore as realistic as can be achieved and represent the true mixedudlubrication conditions occurring in heavily loaded gears. The research also shows theudimportance of precise alignment of the roughness profiles in these conditions.
机译:本文提出了一种基于全啮合周期的瞬变 udelasto流体动力润滑(EHL)仿真,评估齿轮侧面的 udelastic应力,收集应力历史记录以及应用应力和 udratrain-life方法来评估正齿轮的现代方法。计算疲劳参数和累积疲劳损伤,即 u u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b EHL模型,将其作为流体动力雷诺方程弹性挠度方程的耦合系统。通过将雷诺方程的挤压膜项与Crank-Nicolson时间离散化相结合,可以同时解决这些问题,包括瞬态效应。弹性挠度方程的有限差分 uddiscretisation利用在卡迪夫首先化的微分形式来耦合方程。雷诺方程可以通过有限差分或有限元方法离散化。耦合 udsystem可以通过窄带宽高斯消除 udor或Gauss-Seidel迭代方法同时求解。 ud EHL网格节点上EHL压力和 udshear应力的离散值的叠加引起的弹性应力通过进行通过快速傅立叶变换法得出应力的必要 ud卷积。所需的权重/函数已通过分析计算。在 udEHL解网格上获得应力,并将其插值到固定在小齿轮和齿轮 udflank中的网格。然后对它们进行有效地分类和存储,以便能够应用疲劳寿命预测算法。 ud提供了EHL的详细说明和应力评估模型,并对某些疲劳寿命理论和计算进行了简要说明。全面分析的结果将提供给从NASA Glenn实验室疲劳测试和纽卡斯尔大学设计单位微点蚀/ ud调查获得的测试齿轮。通过在极端条件下进行齿轮测试测试,对实际运行条件进行了分析。所使用的表面粗糙度轮廓是初次磨合后从测试齿轮上测得的实测轮廓。因此,模拟未报告的仿真是可以实现的,它是现实的,代表了在重载齿轮中发生的真正的混合润滑状态。研究还显示了在这些条件下粗糙度轮廓的精确对准的重要性。

著录项

  • 作者

    Khaustov Sergey;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号