首页> 外文OA文献 >Data processing on the body-centered cubic lattice
【2h】

Data processing on the body-centered cubic lattice

机译:体心立方晶格上的数据处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The body-centered cubic (BCC) lattice is the optimal three-dimensional sampling lattice. Its optimality stems from the fact that its dual, the face-centered cubic (FCC) lattice, achieves the highest sphere-packing efficiency. In order to approximate a scalar-valued function from samples that reside on a BCC lattice, spline-like compact kernels have been recently proposed. The lattice translates of an admissible BCC kernel form a shift-invariant approximation space that yields higher quality approximations as compared to similar spline-like spaces associated with the ubiquitous Cartesian cubic (CC) lattice. In this work, we focus on the approximation of derived quantities from the scalar BCC point samples and investigate two problems: the accurate estimation of the gradient and the approximate solution to Poisson’s equation within a rectangular domain with homogeneous Dirichlet boundary conditions. In either case, we seek an approximation in a prescribed shift-invariant space and obtain the necessary coefficients via a discrete convolution operation. Our solution methodology is optimal in an asymptotic sense in that the resulting coefficient sequence respects the asymptotic approximation order provided by the space. In order to implement the discrete convolution operation on the BCC lattice, we de- velop efficient three-dimensional versions of the discrete Fourier and sine transforms. These transforms take advantage of the Cartesian coset structure of the BCC lattice in the spatial domain and the geometric properties of the Voronoi tessellation formed by the dual FCC lattice in the Fourier domain. We validate our solution methodologies by conducting qualitative and quantitative experiments on the CC and BCC lattices using both synthetic and real-world datasets. In the context of volume visualization, our results show that, owing to the superior reconstruction of normals, the BCC lattice leads to a better rendition of surface details. Furthermore, like the approximation of the function itself, this gain in quality comes at no additional cost.
机译:体心立方(BCC)晶格是最佳的三维采样晶格。其最佳性源于它的双重面心立方(FCC)晶格实现了最高的球形填充效率。为了从驻留在BCC晶格上的样本近似标量值函数,最近提出了样条样的紧凑核。允许的BCC核的晶格平移形成一个不变位移的近似空间,与与普遍存在的笛卡尔三次(CC)晶格相关的类似样条样空间相比,该位移近似质量更高。在这项工作中,我们将重点放在标量BCC点样本的导出量的近似上,并研究两个问题:梯度的准确估计和具有齐次Dirichlet边界条件的矩形域内Poisson方程的近似解。无论哪种情况,我们都在规定的平移不变空间中寻找一个近似值,并通过离散卷积运算获得必要的系数。我们的解决方案方法在渐近意义上是最优的,因为所得的系数序列遵守该空间提供的渐近逼近顺序。为了在BCC晶格上实现离散卷积运算,我们开发了离散傅里叶和正弦变换的高效三维版本。这些变换利用了空间域中BCC晶格的笛卡尔陪集结构以及傅立叶域中双FCC晶格形成的Voronoi镶嵌的几何特性。我们通过使用合成数据集和实际数据集对CC和BCC晶格进行定性和定量实验,验证了我们的解决方案方法。在体积可视化的情况下,我们的结果表明,由于法线的出色重构,BCC晶格可以更好地再现表面细节。此外,就像函数本身的逼近一样,这种质量的提高不会带来额外的成本。

著录项

  • 作者

    Alim Usman Raza;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号