首页> 外文OA文献 >Distortion Estimation and Graph-based Transform for Visual Communications
【2h】

Distortion Estimation and Graph-based Transform for Visual Communications

机译:视觉通信的失真估计和基于图的变换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, we study several visual communications problems, including joint source-channel coding for single view video transmission, transmission distortion estimation for multiview video coding, and depth video coding for multiview video applications. The first contribution in this thesis is the design and implementation of an error-resilient video conferencing system. We first develop an algorithm to estimate the decoder-side distortion in the presence of packet loss. We then design a family of very short systematic forward error correction (FEC) codes to recover lost packets. Finally, FEC codes are dynamically optimized to minimize the distortion from packet loss. The proposed scheme is demonstrated on a real-time embedded video conferencing system. A similar joint source channel coding framework can also be applied to multiview video coding applications such as free-viewpoint TV. Therefore an algorithm is needed for the encoder to estimate the distortion of the synthesized virtual view. We first derive a graphical model to analyze how random errors in the reference depth image affect the synthesized virtual view. We then consider the case where packet loss occurs in both the encoded texture and depth images during transmission, and develop a recursive algorithm to calculate the pixel level texture and depth probability distributions in the reference views. The recursive algorithm is then integrated with the graphical model method to estimate the distortion in the synthesized view. The graph-based transform has been extensively used for depth image coding in multiview video applications. In this thesis, we aim to develop a single graph-based transform for a class of depth signals. We first propose a 2-D first-order autoregression (2-D AR1) model and a 2-D graph to analyze depth signals with deterministic discontinuities. We show that the inverse of the biased Laplacian matrix of the proposed 2-D graph is exactly the covariance matrix of the proposed 2-D AR1 model. Therefore the optimal transform are the eigenvectors of the proposed graph Laplacian. Next, we show that similar results hold when the locations of the discontinuities are randomly distributed within a confined region. The theory in this thesis can be used to design both pre-computed and signal-dependent transforms.
机译:在本文中,我们研究了几个视觉通信问题,包括用于单视图视频传输的联合源通道编码,用于多视图视频编码的传输失真估计以及用于多视图视频应用的深度视频编码。本文的首要贡献是一种具有抗错能力的视频会议系统的设计与实现。我们首先开发一种算法,以估计在丢包情况下的解码器侧失真。然后,我们设计了一系列非常短的系统前向纠错(FEC)码,以恢复丢失的数据包。最后,动态优化FEC码,以最大程度减少数据包丢失造成的失真。在实时嵌入式视频会议系统上演示了该方案。类似的联合源频道编码框架也可以应用于多视点视频编码应用,例如自由视点电视。因此,编码器需要一种算法来估计合成虚拟视图的失真。我们首先导出一个图形模型来分析参考深度图像中的随机误差如何影响合成的虚拟视图。然后,我们考虑在传输过程中在编码纹理和深度图像中均发生数据包丢失的情况,并开发一种递归算法来计算参考视图中的像素级纹理和深度概率分布。然后将递归算法与图形模型方法集成在一起,以估计合成视图中的失真。基于图的变换已广泛用于多视图视频应用中的深度图像编码。本文旨在为一类深度信号开发一种基于图的变换。我们首先提出一个二维一阶自回归(2-D AR1)模型和一个二维图来分析具有确定性不连续性的深度信号。我们表明,所提出的2-D图的有偏Laplacian矩阵的逆恰好是所提出的2-D AR1模型的协方差矩阵。因此,最佳变换是所提出的图拉普拉斯算子的特征向量。接下来,我们表明当不连续的位置随机分布在有限区域内时,类似的结果成立。本文的理论可用于设计预计算和信号相关的变换。

著录项

  • 作者

    Zhang Dong;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号