首页> 外文OA文献 >Improvements on Deep Bottleneck Network based I-Vector Representation for Spoken Language Identification
【2h】

Improvements on Deep Bottleneck Network based I-Vector Representation for Spoken Language Identification

机译:基于深度瓶颈网络的I-Vector表示用于语音识别的改进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, the i-vector representation based on deep bottleneck networks (DBN) pre-trained for automatic speech recognition has received significant interest for both speaker verification (SV) and language identification (LID). In particular, a recent unified DBN based i-vector framework, referred to as DBN-pGMM i-vector, has performed well.udIn this paper, we replace the pGMM with a phonetic mixture of factor analyzers (pMFA), and propose a new DBN-pMFA i-vector. The DBN-pMFA i-vector includes the following improvements: (i) a pMFA model is derived from the DBN, which can jointly perform feature dimension reduction and de-correlation in a single linear transformation, (ii) a shifted DBF, termed SDBF, is proposed to exploit the temporal contextual information, (iii) a senone selection scheme is proposed to improve the i-vector extraction efficiently.udWe evaluate the proposed DBN-pMFA i-vector on the most confused six languages selected from NIST LRE 2009. The experimental results demonstrate that DBN-pMFA can consistently outperform the previous DBN based framework. The computational complexity can be significantly reduced by applying a simple senone selection scheme.
机译:近来,基于深度瓶颈网络(DBN)的i-vector表示已针对自动语音识别进行了预训练,已经受到演讲者验证(SV)和语言识别(LID)的极大关注。特别是,最近一个基于DBN的统一i-vector框架(称为DBN-pGMM i-vector)表现良好。 ud本文中,我们用因子分析器(pMFA)的语音混合替换了pGMM,并提出了新的DBN-pMFA i向量。 DBN-pMFA i向量包括以下改进:(i)从DBN导出pMFA模型,该模型可以在单个线性变换中共同执行特征尺寸的缩小和去相关,(ii)移位的DBF,称为SDBF (iii)提出了一种senone选择方案,以有效地改善i-vector提取。 ud我们使用从NIST LRE 2009中选择的最混淆的六种语言对提出的DBN-pMFA i-vector进行评估实验结果表明,DBN-pMFA可以始终优于以前的基于DBN的框架。通过应用简单的senone选择方案,可以显着降低计算复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号