首页> 外文OA文献 >Nonparametric statistical downscaling for the fusion of in-lake and remote sensing data
【2h】

Nonparametric statistical downscaling for the fusion of in-lake and remote sensing data

机译:非参数统计缩小法用于湖内数据和遥感数据的融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lakes are vital components of the global biosphere, supporting complex ecosystems and playing important roles in the global biogeochemical cycle. However, they are vulnerable to the threat from climate change and their responses to climate forcing, eutrophication and other pressures, and their possibly confounding interactions, are not yet well understood. Monitoring lake health is therefore essential, in order to understand the changing patterns over space and time.ududTraditionally, in-situ data, which are collected directly from within lakes and analysed in laboratories, have been available for analysis. However, although these data are assumed to be accurate within measurement error, they are expensive to collect, so that few, if any, in-situ sampling locations are available for each lake, often with infrequent sampling at each location. On the other hand, remotely-sensed data, which are derived from reflectance measurements of the Earth's surface, obtained from satellites, have recently become widely available. These data have good spatial coverage of up to 300 metre resolution, covering entire lakes, often with a monthly-average time-scale, but they must firstly be calibrated with the in-situ data to ensure accuracy, before inferences are made.ududThe data for this research were provided by the GloboLakes project (www.globolakes.ac.uk), which is a consortium research project that is investigating the state of lakes and their responses to environmental drivers on a global scale. The research primarily focusses on log(chlorophyll-a) data for Lake Balaton, in Hungary, and for the Great Lakes of North America.ududThe key question of interest for this research is: ``How can data fusion be performed for in-situ and remotely-sensed lake water quality data, accounting for the spatiotemporal change of support between the point-location, point-time in-situ data and the grid-cell-scale, monthly-averaged remotely-sensed data, producing a fused dataset that takes accuracy from the in-situ data and spatial and temporal information from the remotely-sensed data?"ududIn order to answer this question, this thesis presents the following work:ududAn initial analysis of the data for Lake Balaton motivates the following work, by demonstrating the spatial and temporal patterns in the data, using mixed-effects models, generalised additive models, kriging and principal components analysis.ududFollowing the identification of statistical downscaling as an appropriate method for fusion of the data, statistical downscaling models are developed, specifically in the framework of Bayesian hierarchical models with spatially-varying coefficients, for the novel application to data for log(chlorophyll-a), producing fully calibrated maps of fused data across lake surfaces, with associated comprehensive uncertainty measures.ududBivariate and multiple-lakes statistical downscaling models are developed and applied, motivated by the assumption that sharing information between variables and between lakes can improve the accuracy of model predictions.ududThe statistically novel method of nonparametric statistical downscaling is developed, to account for both the spatial and temporal aspects of the change of support between the in-situ and remotely-sensed data. Using methodology from both functional data analysis and statistical downscaling, the model treats in-situ and remotely-sensed data at each location as observations of smooth functions over time, estimated using bases, with the basis coefficients related via a spatially-varying coefficient regression. This is computed within a Bayesian hierarchical model, enabling the calculation of comprehensive uncertainties.ududThis thesis presents the background, motivation, model development and application of the novel method of nonparametric statistical downscaling, filling the gap in the literature of accounting for changing temporal support in statistical downscaling modelling. Results are presented throughout this thesis, to demonstrate the utility of the method for real lake water quality data.
机译:湖泊是全球生物圈的重要组成部分,支持复杂的生态系统并在全球生物地球化学循环中发挥重要作用。但是,它们很容易受到气候变化威胁的威胁,它们对气候强迫,富营养化和其他压力的反应以及它们可能造成混淆的相互作用尚未得到很好的理解。因此,监测湖泊健康至关重要,以便了解随时间和空间变化的格局。 ud ud传统上,可以直接从湖泊内部收集并在实验室中进行分析的现场数据可供分析。但是,尽管这些数据被认为在测量误差范围内是准确的,但是收集起来却很昂贵,因此每个湖泊都很少有(如果有的话)原位采样位置,并且经常在每个位置很少采样。另一方面,从卫星获取的地球表面反射率测量值得出的遥感数据近来已广泛可用。这些数据通常具有每月平均时间尺度,具有高达300米的分辨率的良好空间覆盖范围,覆盖整个湖泊,但是在进行推断之前,必须首先使用原位数据对它们进行校准以确保准确性。 ud这项研究的数据由GloboLakes项目(www.globolakes.ac.uk)提供,该项目是一个财团研究项目,正在全球范围内调查湖泊的状况及其对环境驱动因素的响应。该研究主要集中于匈牙利巴拉顿湖和北美五大湖的log(叶绿素-a)数据。 ud ud该研究的关键问题是:``如何对以下数据进行融合?原位和遥感湖水质量数据,说明了点位置,点时原位数据和网格单元规模,月平均遥感数据之间的支持时空变化。 ud ud为了回答这个问题,本文提出了以下工作: ud ud对数据的初步分析:融合数据集,该数据集可以从原位数据中获取准确性,而可以从遥感数据中获取时空信息? for Balaton湖通过使用混合效应模型,广义加性模型,kriging和主成分分析来演示数据中的空间和时间模式,从而激发了以下工作。 ud ud在确定统计缩减后,将其作为一种适当的方法为了对数据进行融合,特别是在具有空间变化系数的贝叶斯层次模型的框架内,开发了统计缩减模型,以用于对log(叶绿素-a)数据的新应用,生成了跨湖表面融合数据的完全校准图 ud ud基于变量之间和湖泊之间共享信息可以提高模型预测准确性的假设,开发并应用了双变量和多湖统计降尺度模型。 ud ud开发了非参数统计缩减模型,以解决原位和遥感数据之间的支持变化的时空问题。该模型使用功能数据分析和统计缩减的方法,将每个位置的原位和遥感数据视为随时间推移平滑函数的观测值(使用基数估算),基系数通过空间变化系数回归相关。这是在贝叶斯层次模型中计算的,从而可以计算全面的不确定性。 ud ud本文介绍了非参数统计缩减的新方法的背景,动机,模型的开发和应用,填补了会计变动报告中的空白。统计缩减模型中的时间支持。在整个论文中都给出了结果,以证明该方法对于真实湖泊水质数据的实用性。

著录项

  • 作者

    Wilkie Craig John;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号