首页> 外文OA文献 >Development and application of imprinted polymers for selective adsorption of metal Ions and flavonols in complex Samples
【2h】

Development and application of imprinted polymers for selective adsorption of metal Ions and flavonols in complex Samples

机译:印迹聚合物在复杂样品中选择性吸附金属离子和黄酮醇的开发与应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Presence of heavy metals in the environment is a worldwide known contaminationudproblem. Depending on their chemistries and level of contamination, these heavyudmetals can have severe effects on the ecosystem, aquatic life and eventuallyudhumans. Researchers have been particularly interested in finding methods for theudremoval of these pollutants from the environment. Several methods have beenudproposed and some have been used with some degree of success. Methods usedudfor trace metal removal include, chemical precipitation, chemical reduction,udsolvent extraction, micellar ultrafiltration, organic and inorganic ion exchange,udadsorption processes, etc. However, the matrix in which these heavy metals areudpresent in is sometimes very complex and some of these heavy metals are presentudin the environment at very low concentrations, say ppb levels. However, they canudhave adverse effects even at such low-level concentrations. The above-mentionedudmethods usually suffer from the effects of the matrix and by-products producedudafter treatment such as sludge in the case of precipitation. Hence, in this studyudmolecularly imprinted polymers (MIPs) were used. MIPs are highly cross-linkedudpolymers prepared with the presence of template molecule. Once the template hasudbeen removed it leaves behind a cavity that can only fit the template, hence MIPsudare very selective for the template molecule. Metals of interest in this study wereuduranium (VI) and chromium (VI). Therefore, two separate imprinted polymersudwere prepared using chromium and uranium as template molecules for selectiveudextraction of these oxy-ions from aqueous samples. Beside removal of heavyudmetals, the study also focussed on developing MIPs for selective recovery of highudvalue compounds from plant materials (onion and Moringa oleifera).udThree separate imprinted polymers using chromium, uranium or quercetinudtemplates were prepared by bulk polymerization method. Functional monomersudused were 4-vinylpyridine; 1-(prop-2-en-1-yl)-4-(pyridin-2-ylmethyl)piperazineud(PPMP) and methacrylic acid; and 4-vinylpyridine for chromium, uranium andudquercetin imprinted polymers, respectively. For all imprinted polymers, ethyleneudglycol dimethacrylate (EDMA) and 1,1‘-azobis(cyclohexanecarbonitrile) (ACCN) were used as the cross-linking monomer and initiator, respectively. Controludpolymers (CP) or non-imprinted polymers (NIP) for each imprinted polymer wereudprepared and treated exactly the same as imprinted polymers but with omission ofudrespective templates. Following removal of respective templates with appropriateudsolutions, various parameters that affect selective adsorption such as solution pH,udinitial concentration, aqueous phase volume, sorbent dosage, contact time,udbreakthrough volumes etc., were optimized to get optimal adsorption of theudimprinted polymers.udOptimal parameters for Cr (VI) adsorption were as follows: solution pH, 3;udcontact time, 120 min; eluent, 20 mL of 0.1 M NaOH; and sorbent amount, 125udmg. Maximum retention capacity of IIP and CP was 37.58 and 25.44 mg g-1,udrespectively. The observed selectivity order was as follows, Cr (VI) > SO4ud2- > F- >udPO4ud3- > NO2ud- > NO3ud- > Cl-. However, in the presence of high concentrations ofudsulphate ions, the selectivity on the CP completely collapsed. For uranium VIudremoval, the optimal pH was 4.0-8.0, sorbent amount was 20 mg, contact timeudwas 20 min and the retention capacity was 120 mg of uranyl ion per g of IIP. Theudselectivity order observed was as follows, UO2ud2+ > Fe3+ Cu2+ > Co2+ > Mn2+ >udZn2+ ~ Ni2+.udThe binding capacity of quercetin MIPs was investigated at 25 and 84°C,udrespectively, in batch mode. The slopes for the effect of extraction time revealedudthat the mass transfer of the analytes was higher at 84°C than at 25°C. Also, theudbinding capacity for the most promising MIP and its corresponding NIP increasedudat 84°C but the MIP had higher binding capacity. The increase in binding capacityudfor the MIP was from ~30 μmol g-1 at 25°C to ~120 μmol g-1 at 84°C. For theudcorresponding NIP, the binding capacity values were ~15 and ~90 μmol g-1, at 25udand 84°C, respectively. A demonstration of MIP selectivity at higher temperatureudusing standard solutions of selected flavonols showed that the MIP still retainedudits selectivity for quercetin. Similar selectivity was observed when preliminaryudapplication studies on aqueous yellow onion extracts were investigated. The studyudclearly demonstrated the suitability of the developed imprinted polymers (for chromium, uranium and quercetin) for selective adsorption of Cr (VI), UO2ud2+ andudquercetin from their respective complex matrices.udBreakthrough volume of molecular imprinted polymer solid-phase extractionud(MISPE) was investigated using a mixture of myricetin, quercetin andudkaempferol. The breakthrough volumes for quercetin, kaempferol and myricetinudwere 22, 27 and 8 mL, respectively. The number of theoretical plates (N) for theudMISPE column corresponding to these volumes were 18, 47 and 4 for quercetin,udkaempferol and myricetin, respectively. Using these results, selectivity of MIPudand its retention capacity was evaluated. The extractions of Moringa leaves andudflowers were carried out using a MISPE cartridge and various solvents wereudinvestigated for the selective elution of quercetin from the MIP sorbents. Forudidentification and quantification of quercetin and other flavonols, a highudperformance liquid chromatography (HPLC) was used. Recoveries of quercetinudfrom different Moringa extracts ranged from 87 – 92% and this demonstrated thatudthe MISPE method can be used for the recovery of quercetin and kaempferol fromudthe Moringa extracts. Amount of quercetin found in Moringa leaves was 1555 mgudkg-1.udAll the imprinted and non-imprinted polymers prepared in the study wereudcharacterized with Fourier Transform Infrared (FTIR) spectroscopy. Scanningudelectron microscopy (SEM) was used for recording surface morphology of all theudpolymers. Surface area and pore size analysis were recorded on MicromeriticudTristar BET. For quercetin MIP, thermogravimetric analysis (TGA) was also usedudin addition to the mentioned techniques.udIn additional studies, the concentrations of metals in the soil and, in the leaves andudflowers of Moringa plant grown in South Africa were examined. Theudinvestigation included heavy metals, major and trace nutrient elements. Theudanalysis of metals was achieved after total digestion of soils or leaves using audmicrowave, and the concentrations of metals were determined using inductivelyudcoupled plasma-optical emission spectroscopy (ICP-OES). These results were compared to those obtained from some selected vegetables like spinach, cabbage,udcauliflower, broccoli, and peas. No toxic heavy metals were detected in the leavesudand flowers of Moringa. On average Moringa contained higher concentration ofudCa (18500 mg kg-1) and Mg (5500 mg kg-1) than other vegetables compared withudin the study. Other major nutrients contained in Moringa were much similar toudother vegetables. Besides metals, the concentrations of flavonols (myricetin,udquercetin, kaempferol) determined from Moringa leaves and flowers were alsoudcompared to selected vegetables. Plant and vegetable materials were extractedudunder reflux using acidified methanol (1% HCl) solution. Following which, theudflavonols were identified and quantified using reverse phased-high performanceudliquid chromatography method equipped with UV detection. Moringa leavesudexhibited highest concentrations of myricetin (1296.6 mg kg-1), quercetin (1362.6udmg kg-1), kaempferol (1933.7 mg kg-1) than vegetables (spinach: myricetin 620.0udmg kg-1, quercetin 17.9 mg kg-1, kaempferol 215.3 mg kg-1).udLastly, the antioxidant activity of Moringa flowers and leaves were compared toudthat of the aforementioned selected vegetables. The antioxidant activity wasudstudies by analyzing the total phenolic content (TPC), total flavonoid contentud(TFC), reducing power, radical scavenging activity, and the 2,2-diphenyl-1-udpicrylhydrazyl free radical (DPPH) method. Moring contained almost twice theudTPC and thrice the TFC than the vegetables. Also, Moringa demonstrated higherudreducing power and lower percentage of free radicals remaining (DPPH method).udHence, Moringa showed to be a good antioxidant source than the selectedudvegetables compared with.
机译:环境中重金属的存在是世界范围内已知的污染问题。根据其化学性质和污染程度,这些重金属可能会对生态系统,水生生物以及最终的人类造成严重影响。研究人员对寻找从环境中去除这些污染物的方法特别感兴趣。已经提出了几种方法,有些已被成功使用。用于痕量金属去除的方法包括化学沉淀,化学还原,溶剂萃取,胶束超滤,有机和无机离子交换,吸附过程等。但是,这些重金属所处的基质有时非常多。复杂,其中一些重金属以非常低的浓度(例如ppb水平)存在于环境中。但是,即使在如此低的浓度下,它们也可能会产生不利影响。上述方法通常受到基质和处理后产生的副产物如沉淀作用下的污泥的影响。因此,在这项研究中使用了分子印迹聚合物(MIP)。 MIP是在模板分子存在下制备的高度交联的聚合物。一旦模板被去除,它就会留下仅适合模板的空腔,因此MIP对模板分子具有很高的选择性。本研究中感兴趣的金属是铀(VI)和铬(VI)。因此,使用铬和铀作为模板分子制备了两种单独的印迹聚合物,用于从水性样品中选择性地/脱附这些氧离子。除了去除重金属以外,该研究还集中在开发MIP以便从植物材料(洋葱和辣木)中选择性回收高价化合物。ud通过本体聚合制备了三种分别使用铬,铀或槲皮素的印迹聚合物方法。所用的功能单体为4-乙烯基吡啶; 1-(丙-2-烯-1-基)-4-(吡啶-2-基甲基)哌嗪 ud(PPMP)和甲基丙烯酸;和4-乙烯基吡啶分别用于铬,铀和槲皮素印迹聚合物。对于所有的印迹聚合物,分别使用乙烯二甲基丙烯酸乙二醇二乙二醇酯(EDMA)和1,1'-偶氮二(环己烷甲腈)(ACCN)作为交联单体和引发剂。制备每个印迹聚合物的对照 udpolymers(CP)或非印迹聚合物(NIP),并与印迹聚合物完全相同,但省略各自模板。在用合适的 udsolutions除去各自的模板后,优化影响选择性吸附的各种参数,例如溶液的pH, udinitial浓度,水相体积,吸附剂剂量,接触时间, udthrough体积等,以优化对 ud Cr(VI)吸附的最佳参数如下:溶液pH,3; 二次接触时间,120分钟;洗脱液,20 mL的0.1 M NaOH;吸附量为125 udmg。 IIP和CP的最大保留容量分别为37.58和25.44 mg g-1。观察到的选择性顺序如下:Cr(VI)> SO4 ud2-> F-> udPO4 ud3-> NO2 ud-> NO3 ud-> Cl-。但是,在高浓度的硫酸盐离子的存在下,CP的选择性完全崩溃了。对于铀VI 脱除,最适pH为4.0-8.0,吸附量为20 mg,接触时间为20分钟,每克IIP的保留容量为120 mg铀酰离子。观察到的 udselect顺序如下,UO2 ud2 +> Fe3 + Cu2 +> Co2 +> Mn2 +> udZn2 +〜Ni2 +。 ud分别在25和84°C下以分批方式研究了槲皮素MIP的结合能力。提取时间影响的斜率表明, 84°C的分析物的传质高于25°C的分析物的传质。同样,最有前途的MIP及其对应的NIP的 udping能力增加到了84°C,但MIP的绑定能力更高。 MIP的结合能力ud从25°C时的〜30μmolg-1增至84°C时的〜120μmolg-1。对于相应的NIP,在25℃和84°C下的结合容量分别为〜15和〜90μmolg-1。使用选定的黄酮醇的标准溶液在较高温度下对MIP选择性的证明表明,MIP仍然保留槲皮素的选择性。在对水性黄洋葱提取物进行初步应用研究时,观察到相似的选择性。这项研究清楚地证明了开发的印迹聚合物(用于铬,铀和槲皮素)从各自的复杂基质中选择性吸附Cr(VI),UO2 ud2 +和 udquercetin的适用性。 ud分子印迹聚合物固体的突破体积使用杨梅素,槲皮素和 udkaempferol的混合物研究了相萃取 ud(MISPE)。槲皮素的突破量,山奈酚和杨梅素分别为22、27和8 mL。对应于这些体积的 udMISPE色谱柱的理论塔板数(N)分别是槲皮素, udkaempferol和杨梅素的18、47和4。使用这些结果,评估了MIP ud的选择性及其保留能力。辣木叶和花的提取使用MISPE柱进行,并研究了各种溶剂以从MIP吸附剂中选择性洗脱槲皮素。为了对槲皮素和其他黄酮醇进行鉴定和定量,使用了高效液相色谱(HPLC)。从辣木提取物中提取的槲皮素 ud的回收率在87 – 92%之间,这表明MISPE方法可用于从辣木提取物中回收槲皮素和山奈酚。辣木叶片中发现的槲皮素含量为1555 mg udkg-1。 ud使用傅立叶变换红外(FTIR)光谱对研究中制备的所有印迹和非印迹聚合物进行表征。扫描/电子显微镜(SEM)用于记录所有/聚合物的表面形态。在Micromeritic udTristar BET上记录表面积和孔径分析。对于槲皮素MIP,还使用热重分析(TGA) udin和上述技术。 ud在其他研究中,还研究了土壤以及南非生长的辣木植物叶片和花朵中金属的浓度。该调查包括重金属,主要和微量营养元素。金属的消解是在用微波彻底消解土壤或叶片后完成的,金属的浓度采用电感耦合的等离子体发射光谱法(ICP-OES)测定。将这些结果与从某些选定的蔬菜(例如菠菜,卷心菜,花椰菜,西兰花和豌豆)中获得的结果进行比较。在辣木的叶 udand花中未检测到有毒重金属。与本研究相比,辣木平均含有比其他蔬菜更高的 udCa(18500 mg kg-1)和Mg(5500 mg kg-1)浓度。辣木中所含的其他主要营养素与其他蔬菜非常相似。除金属外,从辣木叶片和花朵中测得的黄酮醇(杨梅素, udquercetin,kaempferol)的浓度也与选定的蔬菜相比。用酸化的甲醇(1%HCl)溶液在回流下萃取植物和蔬菜材料。然后,使用配备了UV检测器的反相高效液相色谱法对,黄麻酮醇进行了鉴定和定量。辣木叶子中的杨梅素(1296.6 mg kg-1),槲皮素(1362.6 udmg kg-1),山emp酚(1933.7 mg kg-1)的最高浓度高于蔬菜(菠菜:杨梅素620.0 udmg kg-1,槲皮素17.9 mg最后,将辣木花和叶的抗氧化活性与上述所选蔬菜的抗氧化活性进行比较。通过分析总酚含量(TPC),总黄酮含量 ud(TFC),还原能力,自由基清除活性和2,2-二苯基-1- udpicrylhydrazyl自由基(DPPH)方法研究了抗氧化活性。 。辣木的udTPC几乎是蔬菜的两倍,TFC是蔬菜的三倍。此外,辣木显示出更高的还原能力,残留自由基的百分比更低(DPPH法)。因此,辣木显示出比所选的植物类食物更好的抗氧化剂来源。

著录项

  • 作者

    Pakade Vusumzi Emmanuel;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号