首页> 外文OA文献 >An investigation into visualisation and forecasting of real-time electrical consumption based on smart grid data
【2h】

An investigation into visualisation and forecasting of real-time electrical consumption based on smart grid data

机译:基于智能电网数据的实时用电量可视化和预测研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The smart grid, and in particular smart meters, is a growing world-wide phenomenon which has allowed for the availability of detailed real time usage data to the user in ways that were not possible in the past. South Africa has been slow-moving in adapting smart meters, but in the past two years this has changed and smart meters are becoming the new standard. This has given rise to the need for software applications to help both the South African consumer and local power utilities get the most out of the smart meter data. The purpose of this research is to investigate the possibilities offered by smart grid data obtained from advanced metering infrastructures, with particular emphasis on real time energy usage visualisation and peak load forecasting. Previously, detailed energy usage data has not been available to consumers hence there has not been much research focusing on utilising this data for direct consumer benefit. The focus of most research has mainly been on the power utilities supply side where attention has been on visualising their consumers’ usage and forecasting consumer demand in order to supply them with electricity continuously and efficiently. In this dissertation a benchmarking model for developing smart grid data visualisation dashboards is proposed and this model is used to present and prototype a consumer side dashboard. The prototype implements real time data visualisation techniques, as well as a Multiple Linear Regression model based forecasting algorithm for half hourly peak load forecasting using data collected from the University of the Witwatersrand’s advanced metering infrastructure. In this study the Multiple Linear Regression model is built through a comprehensive analysis of 2 years’ worth of energy usage data from the University of the Witwatersrand and 3 years’ worth of hourly temperature data from the South African Weather Services. The prototype’s performance is evaluated with reference to the proposed benchmark and a user technology acceptance evaluation done by the University’s Property and Infrastructure Management division. The dashboard is found to be a useful and acceptable tool in energy monitoring at the University. The forecasting model performs well with a mean absolute percentage error of 3.69%. The inclusion of a forecasting functionality within the energy management dashboard is shown to have the ability to help the university reduce its electricity bill by being able to shave their peak loads. The analysis highlights the importance of better data archiving and smart meter monitoring thereby ensuring that the meters are always online and no data goes missing which is vital for accurate forecasting results.
机译:智能电网,特别是智能电表,是一种正在全球范围内发展的现象,它允许用户以过去不可能的方式向用户提供详细的实时使用数据。南非在适应智能电表方面一直进展缓慢,但是在过去的两年中,这种情况发生了变化,智能电表正在成为新的标准。这引起了对软件应用程序的需求,以帮助南非的消费者和当地的电力公司充分利用智能电表数据。这项研究的目的是研究从先进的计量基础设施获得的智能电网数据所提供的可能性,尤其侧重于实时能源使用情况可视化和峰值负荷预测。以前,没有详细的能源使用数据可供消费者使用,因此,没有太多研究集中在利用此数据直接为消费者带来利益上。大多数研究的重点主要集中在电力公用事业供应方面,注意力集中在可视化消费者的使用情况和预测消费者的需求上,以便持续有效地为其供电。本文提出了一种用于开发智能网格数据可视化仪表板的基准测试模型,该模型用于展示和原型化用户端仪表板。该原型实现了实时数据可视化技术以及基于多重线性回归模型的预测算法,该算法使用从威特沃特兰德大学的先进计量基础设施收集的数据进行半小时峰值负荷预测。在这项研究中,多元线性回归模型是通过对威特沃特斯兰德大学2年的能源使用数据和南非气象服务的3年每小时温度数据进行综合分析而建立的。该原型的性能是根据建议的基准和由大学的财产和基础设施管理部门进行的用户技术验收评估进行评估的。仪表板是大学能源监测中有用且可接受的工具。预测模型表现良好,平均绝对百分比误差为3.69%。事实证明,在能源管理仪表板中包含预测功能可以通过减少峰值负荷来帮助大学降低电费。分析强调了更好的数据存档和智能电表监控的重要性,从而确保电表始终在线并且不会丢失任何数据,这对于准确的预测结果至关重要。

著录项

  • 作者

    Mangisi Rodwell;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号