首页> 外文OA文献 >Cyanide and cyanide complexes in the goldmine polluted land in the East and Central Rand Goldfields, South Africa
【2h】

Cyanide and cyanide complexes in the goldmine polluted land in the East and Central Rand Goldfields, South Africa

机译:南非东部和中部兰德金矿区金矿污染土地中的氰化物和氰化物络合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of cyanide in gold extraction is of concern when it is not properlyudmanaged from the extraction process to the management of wastes. Theuddistribution and fate of cyanide in the environment upon release from theudtailings dumps depends on its physical-chemical speciation.udThis study presents results of distribution, speciation and fate of cyanide inudselected compartments, namely: tailings, sediments and water systems in goldudmine polluted land.udSampling of tailings in a facility that is being rehabilitated was done in 2006udand 2007 to assess the impact of AMD on cyanide release over that period.udDeposition of materials in the tailings dams stopped in 2004. The resultsudrevealed that the pH of the tailings decreased between 2006 and 2007. Elevatedudconcentrations of CNfree, SCN- and CNO- were observed for 2007 compared toud2006. Most cyanide species had degraded as a result, primarily, of decrease in pH due to generation of AMD, also the oxidation of CNfree and the reactionudwith active sulphur species such as S2O3.udThe decrease of cyanide total (CNT) with time is a consequence of naturaludattenuation of cyanides in tailings which may be attributed to physicalchemicaludand microbiological mechanisms.udCyanide and its metal complexes were found to be unstable followingudgeneration of AMD in the dump over a period of one year. The dissociation ofudmetal-cyanide complexes when the pH drops, releases CNfree which is eitherudvolatilised as HCN(g) or transported in solution with the contamination plumeudor converted to SCN- ,CNO- and NH4ud+.udHowever, in most of cases high concentrations of metal-cyanide complexesudwere found even at low pH values of the tailings suggesting that theseudcomplexes are very stable. This was substantiated by the geochemicaludmodelling which predicted the predominance of iron-cyanide complexes inudtailings at low pH. iiiudCyanide released from cyanide complexes flows into the central pond of theudtailings facility and partly leaches into the groundwater.udSalt crusts were observed along the capillary fringe of the central pond as welludas around other water bodies considered in the study. These crusts were foundudto contain elevated concentrations of heavy metals (e.g. 12940 mg kg-1 Fe andud186.1 mg kg-1 Co) and cyanide (e.g. 118.4 mg kg-1 CNT, 14.36 mg kg-1 CNWADudand 100.2 mg kg-1 CNSAD). This obviously has implications of secondaryudpollution as these crusts tend to be very soluble in water thus leading to theudrelease of heavy metals and cyanide into water systems during rainfall.udCharacterization of cyanide was also done in drainage water from an activeudslimes dam where deposition from a reprocessing plant takes place. The slimesuddam had drainage pipes and a solution trench around it that drained awayudexcess water. Low concentration of CNT was obtained in pipe water from theudpipe with low pH values (2 - 4) whilst this concentration was high in waterudfrom the trench with high pH values (5 -7). Copper and iron complexes wereudthe most abundant. High concentrations of SCN- and CNO- were obtained asudresult of conversion of CNfree as explained previously.udSalt crusts collected around the dam presented low pH (3) and highudconductivity, the evidence of high metals content. High concentrations (198.4udmg kg-1) of CNT were obtained in the crusts with predominance of CNSAD (Feudand Co). The bluish-green colour of the crusts and the elevated concentrationsudof CNSAD as well as those for iron could suggest the presence of Prussian blue.udAnalysis of the wetland sediments showed the transport of cyanide from theudtailings dumps to the wetland through the streams.udAn enrichment of cyanide was observed in the sediment with the enrichmentudfactor of 3 for CNT with predominance of strong complexes (Fe and Co). Theudsediment is rich in organic matter and cyanide is known to bind strongly withudorganic matter. Although other possible sources (e.g. bacterial or microbialudsources) could have contributed to the enrichment of cyanide in sediment, thisudwas not investigated. Cyanide can be transported from the tailings dams to natural streams and otherudsurface water bodies through groundwater. A natural stream within audreprocessing area was considered as a water system and cyanide in it wasudcharacterised. Three clusters were observed: water collected upstream withudhigh pH, water from downstream with low pH (4) and the groundwater withudlow pH (3). Low concentrations of CNfree were obtained downstream. Thisudcould be due by the lost of CNfree by volatilization due acidic pH conditions.udCNT was found to be lower downstream than upstream with the predominanceudof CNWAD. CNT concentrations were high at the seepage point, where theudgroundwater discharges to the surface. These concentrations were similar toudthose obtained in the groundwater.udCopper and iron complexes were dominant in the surface and groundwater andudthis was substantiated by modelling results as well.udSCN- was not detected in surface water as it is highly soluble in water and thenudleaches in the groundwater. The concentrations of CNO- were the same up and downstream.udThe results obtained from the study revealed that concentration of CNfree inudmost water bodies exceeded stipulated limits by bodies such as WHO, USEPAudand UE. For instance, concentrations of up to 0.304 mg l-1 of CNfree wereudobtained in some instances to compare with limits of 0.07 mg l-1 by WHO, 0.02udmg l-1 by DWAF/South Africa.udAdditional studies should be done to find out the impact of organic matter (e.g.udhumic and fulvic acids) on the fate of cyanide. Various natural attenuationudmechanisms of cyanide in tailings dams should be investigated. An assessmentudof the phytoremediation program vis-à-vis cyanide cyclisation is recommendedudand a monitoring of groundwater (borehole water) quality is required.
机译:如果从提取过程到废物处理的过程未得到适当妥善管理,则在金提取中使用氰化物会引起关注。从尾料堆中释放出来后,氰化物在环境中的分布和命运取决于其理化形态。 ud本研究提出了选定的车厢中氰化物的分布,形态和命运的结果,即:尾矿,沉积物和水 ud受污染的土地中的系统。 ud正在修复中的设施的尾矿取样已于2006 udand 2007年进行,以评估该时期AMD对氰化物释放的影响。 ud尾矿坝中的物料沉积于2004年停止结果表明,在2006年至2007年之间,尾矿的pH值有所下降。与2007年的ud2006相比,2007年的CNfree,SCN-和CNO-浓度升高。大多数氰化物已降解,主要是由于生成AMD导致pH降低,CNfree的氧化以及与活性硫物质如S2O3的反应。 ud随着时间的推移,氰化物总量(CNT)的降低为尾矿中氰化物的自然 udud衰减的结果可能是由于物理化学 udand微生物学机制。 ud氰化物及其金属配合物被发现在一年的时间内在AMD的 ud生成后不稳定。当pH下降时, udmetal-氰化物络合物解离,释放出CNfree,CNfree挥发为HCN(g)或在溶液中运输,污染物羽流转化为SCN-,CNO-和NH4 ud +。 ud但是,在大多数情况下,即使在尾矿的低pH值下也发现了高浓度的金属氰化物配合物,这表明这些配合物非常稳定。地球化学模拟模型证实了这一点,该模型预测了低pH条件下氰化物中铁-氰化物配合物的优势。 iii ud从氰化物络合物中释放出来的氰化物流入 tailings设施的中心池塘,部分渗入地下水。 ud在研究中考虑的中心池塘的毛细边缘以及其他水体周围观察到了盐结皮。发现这些地壳含有高浓度的重金属(例如12940 mg kg-1 Fe和 ud186.1 mg kg-1 Co)和氰化物(例如118.4 mg kg-1 CNT,14.36 mg kg-1 CNWAD udand 100.2 mg kg-1 CNSAD)。显然,这具有二次污染的隐患,因为这些结壳往往非常易溶于水,从而导致降雨期间重金属和氰化物向水系统中的过量释放。另外,活性废水中的氰化物特征也已经在废水中进行了表征。大坝,后处理厂发生沉淀。粘泥 uddam有排水管和围绕它的溶液沟渠,以排出 udxcess水。低pH值(2-4)的自来水在管道水中得到的CNT浓度低,而高pH值(5 -7)的沟槽中自来水中的CNT浓度很高。铜和铁配合物最丰富。如前所述,由于CNfree的转化,获得了高浓度的SCN-和CNO-。 ud在大坝周围收集的盐结皮具有较低的pH(3)和较高的导电性,这是高金属含量的证据。在地壳中获得了高浓度(198.4 udmg kg-1)的CNT,其中主要是CNSAD(Fe udand Co)。地壳的蓝绿色和CNSAD的高浓度 udud以及铁的浓度都表明存在普鲁士蓝。 ud对湿地沉积物的分析表明,氰化物从 udtails垃圾场通过湿地运到湿地。 ud在沉积物中观察到氰化物的富集,其中以强配合物(Fe和Co)为主的CNT的富集/富集系数为3。沉淀物富含有机物,并且氰化物与沉淀物牢固结合。尽管其他可能的来源(例如细菌或微生物来源)可能有助于沉积物中氰化物的富集,但尚未对此进行研究。氰化物可以通过地下水从尾矿坝运输到自然溪流和其他地表水体。加工后区域内的天然流被认为是水系统,其中的氰化物已被表征。观察到三个簇:pH值较高的上游收集的水,pH值较低的来自下游的水(4)和pH值较低的地下水(3)。在下游获得低浓度的CNfree。这可能是由于酸性pH条件下挥发导致CNfree的损失所致。发现udCNT的下游位置比上游位置低,且以CNWAD为主。碳纳米管浓度在渗流点较高,地下水排放到地表。这些浓度类似于 udose在地下水中获得的浓度。 ud铜和铁络合物在地表和地下水中占主导地位,并且 ud这也通过建模结果得以证实。然后在地下水中渗水。研究的结果表明,世界上水体中无游离态的CNfree浓度超过了WHO,USEPA,ud和UE等机构规定的限值。例如,在某些情况下, u获得了高达0.304 mg l-1的CNfree浓度,以与WHO的限量0.07 mg l-1,DWAF /南非的0.02 udmg l-1进行比较。 ud应进行其他研究旨在发现有机物质(例如腐殖酸和黄腐酸)对氰化物命运的影响。应研究尾矿坝中氰化物的各种自然衰减 ud机制。建议对氰化物环化进行植物修复计划的评估 ud,并要求对地下水(钻孔水)质量进行监控。

著录项

  • 作者

    Nsimba Elysee Bakatula;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号