首页> 外文OA文献 >A Hierarchical Model for Association Rule Mining of Sequential Events: An Approach to Automated Medical Symptom Prediction
【2h】

A Hierarchical Model for Association Rule Mining of Sequential Events: An Approach to Automated Medical Symptom Prediction

机译:顺序事件的关联规则挖掘的分层模型:一种自动医学症状预测的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many healthcare settings, patients visit healthcare professionals periodically and report multiple medical conditions, or symptoms, at each encounter. We propose a statistical modeling technique, called the Hierarchical Association Rule Model (HARM), that predicts a patient’s possible future symptoms given the patient’s current and past history of reported symptoms. The core of our technique is a Bayesian hierarchical model for selecting predictive association rules (such as “symptom 1 and symptom 2 → symptom 3 ”) from a large set of candidate rules. Because this method “borrows strength” using the symptoms of many similar patients, it is able to provide predictions specialized to any given patient, even when little information about the patient’s history of symptoms is available.
机译:在许多医疗保健环境中,患者会定期拜访医疗保健专业人员,并在每次遭遇时报告多种医疗状况或症状。我们提出了一种统计建模技术,称为“层次关联规则模型(HARM)”,它可以根据患者当前和过去所报告症状的历史来预测患者将来可能出现的症状。我们技术的核心是贝叶斯分层模型,用于从大量候选规则中选择预测性关联规则(例如“症状1和症状2→症状3”)。因为此方法利用许多相似患者的症状来“借力”,所以即使很少有有关患者症状史的信息,它也可以提供针对任何给定患者的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号