首页> 外文OA文献 >Canonical Metrics in Sasakian Geometry
【2h】

Canonical Metrics in Sasakian Geometry

机译:Sasakian几何中的标准度量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this thesis is to study the existence problem for canonical Sasakian metrics, primarily Sasaki-Einstein metrics. We are interested in providing both necessary conditions, as well as sufficient conditions for the existence of such metrics. We establish several sufficient conditions for the existence of Sasaki-Einstein metrics by studying the Sasaki-Ricci flow. In the process, we extend some fundamental results from the study of the Kahler-Ricci flow to the Sasakian setting. This includes finding Sasakian analogues of Perelman's energy and entropy functionals which are monotonic along the Sasaki-Ricci flow. Using these functionals we extend Perelman's deep estimates for the Kahler-Ricci flow to the Sasaki-Ricci flow. Namely, we prove uniform scalar curvature, diameter and non-collapsing estimates along the Sasaki-Ricci flow. We show that these estimates imply a uniform transverse Sobolev inequality. Furthermore, we introduce the sheaf of transverse foliate vector fields, and show that it has a natural, transverse complex structure. We show that the convergence of the flow is intimately related to the space of global transversely holomorphic sections of this sheaf. We introduce an algebraic obstruction to the existence of constant scalar curvature Sasakian metrics, extending the notion of K-stability for projective varieties. Finally, we show that, for regular Sasakian manifolds whose quotients are Kahler-Einstein Fano manifolds, the Sasaki-Ricci flow, or equivalently, the Kahler-Ricci flow, converges exponentially fast to a (transversely) Kahler-Einstein metric.
机译:本文的目的是研究规范的Sasakian度量,主要是Sasaki-Einstein度量的存在问题。我们有兴趣提供必要条件,以及为存在此类指标提供充分条件。通过研究Sasaki-Ricci流,我们为Sasaki-Einstein度量的存在建立了几个充分条件。在此过程中,我们将对Kahler-Ricci流的研究的一些基本结果扩展到Sasakian环境。这包括找到沿Sasaki-Ricci流单调的Perelman能量和熵泛函数的Sasakian类似物。使用这些功能,我们将Perelman对Kahler-Ricci流的深层估计扩展到Sasaki-Ricci流。即,我们证明了沿着Sasaki-Ricci流的均匀标量曲率,直径和非塌陷估计。我们表明,这些估计值暗示了均匀的横向Sobolev不等式。此外,我们介绍了横向叶矢量场捆,并表明它具有天然的横向复杂结构。我们表明,流动的收敛与该捆的整体横向全同形截面的空间密切相关。我们为恒定标量曲率Sasakian度量的存在引入了代数障碍,扩展了射影变体的K稳定性概念。最后,我们证明,对于商数为Kahler-Einstein Fano流形的常规Sasakian流形,Sasaki-Ricci流或等效的Kahler-Ricci流以指数方式快速收敛到(横向)Kahler-Einstein度量。

著录项

  • 作者

    Collins Tristan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号