首页> 外文OA文献 >Graph Embedding and Nonlinear Dimensionality Reduction
【2h】

Graph Embedding and Nonlinear Dimensionality Reduction

机译:图嵌入和非线性降维

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditionally, spectral methods such as principal component analysis (PCA) have been applied to many graph embedding and dimensionality reduction tasks. These methods aim to find low-dimensional representations of data that preserve its inherent structure. However, these methods often perform poorly when applied to data which does not lie exactly near a linear manifold. In this thesis, I present a set of novel graph embedding algorithms which extend spectral methods, allowing graph representations of high-dimensional data or networks to be accurately embedded in a low-dimensional space. I first propose minimum volume embedding (MVE) which, like other leading dimensionality reduction algorithms, first encodes the high-dimensional data as a nearest-neighbor graph, where the edge weights between neighbors correspond to kernel values between points, and then embeds this graph in a low-dimensional space. Next I present structure preserving embedding (SPE), an algorithm for embedding unweighted graphs where similarity between nodes is not known. SPE finds low-dimensional embeddings which explicitly preserve graph topology, meaning a connectivity algorithm, such as k-nearest neighbors, will recover the edges of the input graph from only the coordinates of the nodes after embedding. I further explore preserving graph structure during embedding, and find the concept applicable to dimensionality reduction, large-scale network visualization, and metric learning for link prediction. This thesis posits that simply preserving pairwise distances, as with many spectral methods, is insufficient for capturing the structure of many datasets and that preserving both local distances and graph topology is crucial for producing accurate low-dimensional representations of networks and high-dimensional data.
机译:传统上,光谱方法(例如主成分分析(PCA))已应用于许多图形嵌入和降维任务。这些方法旨在找到保留其固有结构的数据的低维表示。但是,这些方法应用于不完全位于线性流形附近的数据时,通常效果较差。在本文中,我提出了一组新颖的图形嵌入算法,这些算法扩展了频谱方法,允许将高维数据或网络的图形表示形式准确地嵌入到低维空间中。我首先提出最小体积嵌入(MVE),它与其他领先的降维算法一样,首先将高维数据编码为最近邻居图,其中邻居之间的边权重对应于点之间的核值,然后嵌入该图在低维空间中。接下来,我介绍结构保留嵌入(SPE),一种用于在节点之间的相似性未知的情况下嵌入未加权图的算法。 SPE发现低维嵌入,这些嵌入可显式保留图拓扑,这意味着诸如k最近邻居之类的连接算法将仅在嵌入后从节点的坐标中恢复输入图的边缘。我进一步探索了在嵌入过程中保留图的结构,并找到了适用于降维,大规模网络可视化以及用于链接预测的度量学习的概念。本文认为,像许多频谱方法一样,简单地保存成对距离不足以捕获许多数据集的结构,同时保留局部距离和图拓扑对于生成网络和高维数据的准确低维表示至关重要。

著录项

  • 作者

    Shaw Blake;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号