首页> 外文OA文献 >Learning Patterns from Unix Process Execution Traces for Intrusion Detection
【2h】

Learning Patterns from Unix Process Execution Traces for Intrusion Detection

机译:从Unix进程执行跟踪中学习模式以进行入侵检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we describe our preliminary experiments to extend the work pioneered by Forrest (see Forrest et al. 1996) on learning the (normal and abnormal) patterns of Unix processes. These patterns can be used to identify misuses of and intrusions in Unix systems. We formulated machine learning tasks on operating system call sequences of normal and abnormal (intrusion) executions of the Unix sendmail program. We show that our methods can accurately distinguish all abnormal executions of sendmail from the normal ones provided in a set of test traces. These preliminary results indicate that machine learning can play an important role by generalizing stored sequence information to perhaps provide broader intrusion detection services. The experiments also reveal some interesting and challenging problems for future research.
机译:在本文中,我们描述了初步的实验,以扩展由Forrest(请参阅Forrest等人,1996)在学习Unix进程的(正常和异常)模式方面所做的工作。这些模式可用于识别Unix系统中的滥用和入侵。我们根据Unix sendmail程序的正常和异常(入侵)执行的操作系统调用序列制定了机器学习任务。我们证明了我们的方法可以准确地将sendmail的所有异常执行与一组测试跟踪中提供的正常执行区分开。这些初步结果表明,机器学习可以通过概括存储的序列信息以提供更广泛的入侵检测服务而发挥重要作用。实验还揭示了一些有趣和具有挑战性的问题,以供将来研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号